globalchange  > 气候变化事实与影响
CSCD记录号: CSCD:6416813
论文题名:
基于随机森林算法的冬小麦提取研究
其他题名: Research on Extraction of Winter Wheat based on Random Forest
作者: 贺原惠子1; 王长林2; 贾慧聪2; 陈方3
刊名: 遥感技术与应用
ISSN: 1004-0323
出版年: 2018
卷: 33, 期:6, 页码:711-718
语种: 中文
中文关键词: 冬小麦 ; 快速提取 ; 随机森林算法 ; 特征空间 ; 特征选择
英文关键词: Winter wheat ; Rapid extraction ; Random forest algorithm ; Feature space ; Feature selection
WOS学科分类: REMOTE SENSING
WOS研究方向: Remote Sensing
中文摘要: 全球气候变化对粮食安全和农业可持续发展造成威胁,冬小麦作为全球重要粮食作物之一,其快速和准确的信息提取对保障区域粮食稳定具有重要意义。采用在农作物识别和提取领域具有明显优势的随机森林算法,结合典型冬小麦种植区光谱特征、纹理特征和主成分特征实现了30m空间分辨率遥感影像下的冬小麦地块的特征选择和快速提取,并分析了不同特征空间组合方式下的提取效果。研究表明:在光谱特征、光谱特征+纹理特征、光谱特征+纹理特征+主成分特征3种特征空间组合下,第3种组合方式下的冬小麦提取效果最佳,总体精度可达到84.85%,分别高于前两种方式8.08%和6.88%。因此,利用随机森林算法结合多源特征信息,可以有效实现特定农作物如冬小麦的快速提取,并为区域作物进一步应用研究提供有效数据支撑。
英文摘要: Global climate change poses a threat to food development and sustainable development of agriculture. As one of the world's most significant food crops,rapid and accurate information extraction of it is of great importance in ensuring food stability and security.In this paper,the random forest algorithm with obvious advantages in crop identification and extraction was selected.The feature selection and rapid extraction of winter wheat plots based on 30mspatial resolution imageswere achieved by combining the spectral features,texture features and the principal components of the typical winter wheat growing areas.The extraction results under different feature spaces combination were compared and analyzed.The results showed that under the combination of three spectral spaces:spectral feature,spectral feature+texture feature andspectral feature+texture feature+principal component feature,the third combination method had the best extraction efficiency and the highest overall accuracy up to 84.85%,respectively higher than the previous two 8.08%and 6.88%.Therefore,by using random forest algorithm combined with multi-source feature information,the rapid extraction of specific crops,such as winter wheat,can be effectively achieved and provide effective data,thus supporting for the further application of regional crops.
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/155014
Appears in Collections:气候变化事实与影响

Files in This Item:

There are no files associated with this item.


作者单位: 1.中国科学院遥感与数字地球研究所
2.中国科学院大学, 中国科学院数字地球重点实验室
3.,
4., 北京
5.北京 100094
6.100049, 中国
7.中国科学院遥感与数字地球研究所, 中国科学院数字地球重点实验室, 北京 100094, 中国
8.中国科学院遥感与数字地球研究所
9.中国科学院大学
10.海南省地球观测重点实验室, 中国科学院数字地球重点实验室
11.海南省地球观测重点实验室,
12.三亚, 北京
13.北京
14.海南 100094
15.100049
16.572029, 中国

Recommended Citation:
贺原惠子,王长林,贾慧聪,等. 基于随机森林算法的冬小麦提取研究[J]. 遥感技术与应用,2018-01-01,33(6):711-718
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[贺原惠子]'s Articles
[王长林]'s Articles
[贾慧聪]'s Articles
百度学术
Similar articles in Baidu Scholar
[贺原惠子]'s Articles
[王长林]'s Articles
[贾慧聪]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[贺原惠子]‘s Articles
[王长林]‘s Articles
[贾慧聪]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.