globalchange  > 气候变化事实与影响
CSCD记录号: CSCD:6498431
论文题名:
无人机遥感影像面向对象分类的冻土热融滑塌边界提取
其他题名: Object - oriented classification of unmanned aerial vehicle image for thermal erosion gully boundary extraction
作者: 梁林林1; 江利明1; 周志伟2; 陈玉兴1; 孙亚飞1
刊名: 国土资源遥感
ISSN: 1001-070X
出版年: 2019
卷: 31, 期:2, 页码:849-856
语种: 中文
中文关键词: 冻土热融滑塌 ; 无人机遥感 ; 黑河上游俄博岭冻土区 ; 高空间分辨率影像 ; 面向对象分析
英文关键词: thermal erosion gully of permafrost ; unmanned aerial vehicle ; Eboling Mountain of Heihe River permafrost region ; high spatial resolution images ; object - oriented analysis
WOS学科分类: REMOTE SENSING
WOS研究方向: Remote Sensing
中文摘要: 全球气候变暖及人类活动导致青藏高原大面积冻土退化、热融滑塌等问题,严重影响了多年冻土区工程建设和生态环境。利用无人机高空间分辨率影像和面向对象分类技术进行了黑河上游俄博岭垭口冻土区热融滑塌监测实验,详细分析了最邻近、K -最邻近、决策树、支持向量机(support vector machine,SVM)和随机森林5种面向对象监督学习方法提取冻土热融滑塌边界的性能和精度,并使用野外实测数据对实验结果进行验证。结果表明,面向对象分析中分割尺度对热融滑塌提取结果影响较小,而不同组合的分类特征影响较大,因此选择合适的分类特征是关键; 5种分类方法的总体精度均在90%以上,其中SVM方法的Kappa系数高于其他4种分类方法,表明该方法在本次实验研究中更适合无人机遥感影像冻土热融滑塌边界提取。无人机高空间分辨率遥感与面向对象分类方法相结合在冻土热融滑塌监测中具有广阔的应用前景。
英文摘要: Global climate warming and human activities have caused large areas of permafrost degradation and thermal erosion gully in the Tibetan Plateau,seriously affecting the engineering construction and the ecological environment in permafrost regions. In this study,high resolution unmanned aerial vehicle (UAV) images and object - oriented classification approaches were applied to extracting the thermal erosion gullies in Eboling Mountain of Heihe River. Five kinds of object - oriented supervised learning algorithms,namely nearest neighbor,K - nearest neighbor,decision tree,support vector machine (SVM) ,and random forest,were analyzed for the capability and accuracy of the extraction of thermal erosion gullies in detail. The field GPS data were used for evaluating the classification accuracy. The results show that,in the object - oriented image analysis,the segmentation scale parameters have little effect on the extraction of thermal erosion gullies,wheres classification features have a greater impact,so it is important to select the appropriate classification features. The overall accuracies of the five machine learning methods are all over 90%,among which the Kappa coefficient of the SVM is higher than the other four classification methods. This means that SVM is more suitable for the thermal erosion gullies boundary extraction of UAV images in this study. The combination of high resolution UAV images and object - oriented classification methods has broad application prospects in the extraction of the thermal erosion gullies.
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/155785
Appears in Collections:气候变化事实与影响

Files in This Item:

There are no files associated with this item.


作者单位: 1.中国科学院测量与地球物理研究所
2.中国科学院大学, 大地测量与地球动力学国家重点实验室
3., 武汉
4.,
5.北京 430077
6.100049
7.中国科学院测量与地球物理研究所, 大地测量与地球动力学国家重点实验室, 武汉, 湖北 430077, 中国

Recommended Citation:
梁林林,江利明,周志伟,等. 无人机遥感影像面向对象分类的冻土热融滑塌边界提取[J]. 国土资源遥感,2019-01-01,31(2):849-856
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[梁林林]'s Articles
[江利明]'s Articles
[周志伟]'s Articles
百度学术
Similar articles in Baidu Scholar
[梁林林]'s Articles
[江利明]'s Articles
[周志伟]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[梁林林]‘s Articles
[江利明]‘s Articles
[周志伟]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.