globalchange  > 气候变化事实与影响
CSCD记录号: CSCD:6419108
论文题名:
基于Hadoop的气象大数据分析GIS平台设计与试验
其他题名: Design and Test of GIS Platform for Meteorological Data Analysis Based on Hadoop
作者: 李涛1; 冯仲科1; 孙素芬2; 程文生1
刊名: 农业机械学报
ISSN: 1000-1298
出版年: 2019
卷: 50, 期:1, 页码:87-99
语种: 中文
中文关键词: 气象数据 ; 分布式
英文关键词: Hadoop ; MapReduce ; meteorological data ; distributed ; Hadoop ; MapReduce
WOS学科分类: AGRICULTURE MULTIDISCIPLINARY
WOS研究方向: Agriculture
中文摘要: 针对海量气象数据在传统WebGIS平台下存储和分析计算受到限制的问题,提出基于Hadoop的分布式计算和存储框架,使用了Hadoop生态体系中的HDFS分布式文件存储框架来存储管理分析海量气象数据.在海量数据的并行计算分析方面,使用MapReduce作为分布式计算编程模型,该模型通过分析海量气候数据可对农业生产进行决策.最后,利用地理信息系统空间可视化技术,在前端页面以三维形式对分析结果进行展示,并分析比较数据量和集群中节点数对计算耗时的影响.试验结果表明,使用分布式多节点集群可以有效提高海量气象数据的存储和计算效率,解决了传统WebGIS平台数据存储与计算的局限性问题.
英文摘要: Massive meteorological data is limited in storage and analysis on the traditional WebGIS platform. A distributed computing and storage framework based on Hadoop to manage and analyze a large number of meteorological data was proposed. The HDFS distributed file storage framework was used in Hadoop ecosystem to store and manage massive meteorological data. In the aspect of parallel computing and analysis of massive data, MapReduce was used as the basis of distributed computing programming model. This model can make decision for agricultural production by analyzing massive climatic data. The application of regional large data decision analysis suitable for crop growth and the analysis of large data for meteorological disaster assessment were tried out. It had great application value for the research of climate change information extraction and analysis in agricultural production decision-making and other fields. Finally, the front-end pages displayed the analysis results in three-dimensional form by using the geographic information system spatial visualization technology, which made the analysis results more intuitive, and easier to analyze and decision-making, and then the impact of size of data and the number of nodes in the cluster on computing time-consuming was analyzed and compared, and the configuration was tuned the most efficient. Experiment results showed that using distributed multi-node cluster can effectively improve the storage and calculation efficiency of massive meteorological data, and solve the limitations of traditional WebGIS platform.
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/155928
Appears in Collections:气候变化事实与影响

Files in This Item:

There are no files associated with this item.


作者单位: 1.北京林业大学, 精准林业北京市重点实验室, 北京 100083, 中国
2.北京市农林科学院农业科技信息研究所, 北京 100097, 中国

Recommended Citation:
李涛,冯仲科,孙素芬,等. 基于Hadoop的气象大数据分析GIS平台设计与试验[J]. 农业机械学报,2019-01-01,50(1):87-99
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[李涛]'s Articles
[冯仲科]'s Articles
[孙素芬]'s Articles
百度学术
Similar articles in Baidu Scholar
[李涛]'s Articles
[冯仲科]'s Articles
[孙素芬]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[李涛]‘s Articles
[冯仲科]‘s Articles
[孙素芬]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.