This study aimed to develop an integrated inventory of the atmospheric emissions of total suspended particulate (TSP), inhalable particles (PM_(10)) and fine particles (PM_(2.5)) from wind erosion at fine resolution in China during the period 1995~2015 and project the trend of emissions from now until 2100. A bottom-up method was utilized to compile this comprehensive inventory with updated historical meteorological data (e.g., wind speed, precipitation and temperature), land use categories and soil contents at provincial level. The national total emissions of TSP, PM_(10) and PM_(2.5) from wind erosion were estimated as 2.27*10~7t, 6.77*10~6t and 1.17*10~6t, respectively. Higher emissions were observed in Northern or Eastern China compared with Southern and Western China. Highest emission intensity was found in Western Inner Mongolia and most of Xinjiang Province. Furthermore, based on the Intergovernmental Panel on Climate Change (IPCC) predictions of future climate change, emission trends of TSP, PM_(10) and PM_(2.5) from wind-erosion process in the future was estimated. Under the combined effects of precipitation and temperature changes, wind erosion dust emissions in 2100 is between -8.5 % ~ 7.7 % compared to 2005. The increase of precipitation will inhibit the emissions of wind-erosion dust while the rapid increase of ambient temperature can make the land surface more prone to produce particles.