As a reliable proxy for paleoclimate and paleoenvironment, magnetic parameter could provide valuable data for the research of global environmental changes and climatic processes. A detailed study has been carried out on rock magnetism in order to reveal the change of climate and environment and its reasons across Guadalupian-Lopingian (G-L) boundary at Tieqiao section in Laibin area, Guangxi, China. The results show that the dominant magnetic minerals from Tieqiao section are paramagnetic minerals with a small amount of magnetite and hematite as well. There is a remarkable change in the properties of rock magnetism near the G-L boundary. Magnetic susceptibility increases first and then decreases. Magnetic carriers show the trend of being transformed from hard magnetic minerals (hematite) to soft magnetic mineral (magnetite) and then turning to hard magnetic minerals (hematite). All of these changes occur within 4 m-thick strata interval above and below the G-L boundary, and synchronize with the fluctuation of sea-level and ancient seawater temperature during late Middle Permian. The significant changes in magnetic parameters for Middle-Late Permian carbonates suggest that the migration and conversion of magnetic minerals between different spheres in earth system has shifted, which resulted from the climatic and environmental changes. High sea-level during Late Guadalupian and Early Lopingian resulted in the decrease in terrigenous supply in South China. Therefore, the magnetic carriers in Tieqiao section mainly are hematite through aeolian transportation during this period. However, pronounced regression during the Middle-Late Permian transition led to the expansion of exposed land area. Meanwhile, land plants experienced widespread extinction, which led to increased sediment source. The magnetic carriers in contemporaneous sediments of Tieqiao section are mainly fluvial magnetite.