Synthetic Aperture Radar(SAR)has been widely applied in mountain glaciers dynamic monitoring in advantages of working with all-weather, all-time and penetrating cloud and mist. In this paper, the glacier flow velocity was derived with feature-tracking procedures and the spatial difference and influence factors of glacier flow velocity in the Everest region, the Himalayas were analyzed based on three ALOS/PALSAR images. It is shown that the average flow velocity of the 31 valley glaciers in the study area is 9.3 cm?d~(-1). Generally, bounded by the north-south Everest-Lhotse ridge line, the glaciers on the east and south-east sides are more active than the glaciers on the north and north-west sides, with average velocity of 11.1 cm?d~(-1) and 5.4 cm?d~(-1), respectively. In the ablation area, flow velocity on non-debris covered ice is about 2.2 times larger than that on debris covered ice. Furthermore, the development of supra-glacial lakes accelerates the fluctuation of glacier flow velocity to some extent. Under combined action and inter-shift of climate and non-climatic factors, flow velocity of 65% of the glaciers decreases significantly from the median height down to glacier terminal, while 16% of them increases significantly, and the remaining 19% have no significant variation.