globalchange  > 气候变化事实与影响
CSCD记录号: CSCD:5897461
论文题名:
遗传算法在柱状高温气冷堆换料优化问题中的应用
其他题名: Block-type high temperature gas cooled reactor reloading pattern optimization using genetic algorithm
作者: 黄杰1; 李文强2; 丁铭1
刊名: 强激光与粒子束
ISSN: 1001-4322
出版年: 2017
卷: 29, 期:1, 页码:016002-1-016002-07
语种: 中文
中文关键词: 遗传算法 ; 换料优化 ; 柱状高温气冷堆 ; 验证
英文关键词: genetic algorithm ; reloading pattern optimization ; block-type high temperature gas cooled reactor ; verification
WOS学科分类: NUCLEAR SCIENCE TECHNOLOGY
WOS研究方向: Nuclear Science & Technology
中文摘要: 堆芯换料方案的优化是一个典型的组合优化问题,其搜索空间异常庞大。传统的优化算法很难在如此巨大的搜索空间中寻找出全局最优解。遗传算法以其优良的自适应能力和优化能力,为组合优化问题提供了一个非常有效的解决途径。采用遗传算法对柱状高温气冷堆堆芯装料方案进行了优化,并编写了相应程序。为了提高堆物理的计算精度,堆芯临界计算采用26群输运计算。由于多群输运计算需要大量计算时间,为此对遗传算法进行了并行优化。为了验证遗传算法对柱状高温气冷堆换料的优化能力,构造了一个8组件的小型柱状高温气冷堆换料优化基准题。结果表明,遗传算法在柱状高温气冷堆换料优化问题中具有良好的优化能力和计算稳定性。
英文摘要: The reactor reloading pattern optimization is a typical combinatorial optimization problem with a huge search space. It is very hard for traditional optimization algorithm to find the global optimal solution in such huge search space. However, for combinatorial optimization problem, the genetic algorithm (GA) provides a very effective solution by its excellent adaptive ability and optimization ability. This paper is focused on the reloading pattern optimization by using GA in a block-type high temperature gas cooled reactor(HTGR) and corresponding programs were written to realize this goal. To improve the calculation accuracy of core physics, the transport calculation with 26 groups is adopted in the core calculation, which will also be time-consuming. To make up for this shortcoming, the parallel optimization of GA is carried out. Finally, a refueling optimization benchmark in a small HTGR is constructed to test the optimization ability of GA. The results show that GA has a good optimization ability and computational stability for reloading pattern optimization in block-type HTGRs.
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/157255
Appears in Collections:气候变化事实与影响

Files in This Item:

There are no files associated with this item.


作者单位: 1.哈尔滨工程大学核科学与技术学院, 哈尔滨, 黑龙江 150001, 中国
2.上海交通大学核能科学与工程学院, 上海 200240, 中国

Recommended Citation:
黄杰,李文强,丁铭. 遗传算法在柱状高温气冷堆换料优化问题中的应用[J]. 强激光与粒子束,2017-01-01,29(1):016002-1-016002-07
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[黄杰]'s Articles
[李文强]'s Articles
[丁铭]'s Articles
百度学术
Similar articles in Baidu Scholar
[黄杰]'s Articles
[李文强]'s Articles
[丁铭]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[黄杰]‘s Articles
[李文强]‘s Articles
[丁铭]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.