To study the influence of internal meridian rib and external stiffening ring on the wind-induced stable performance responses of super large cooling towers, a super large cooling tower under construction with the world's highest height of 220 m in a domestic power plant was taken as an example. Four design schemes including smooth tower, meridian ribbed tower, stiffening ring tower, and meridian ribbed and stiffening ring tower were proposed. The overall stability, local stability and ultimate bearing capacity of cooling tower during construction were compared and analyzed considering the internal suction, construction load and concrete age. Then, the influence rule of stiffening ring and meridian rib setting on the wind induced stability of super large cooling tower was studied. The results show that setting stiffening ring improves the global stability of the structure by reducing wind-induced response, but it will significantly weaken the local stability of the structure. At the same time, setting radial on results in the decrease of structural overall stability and ultimate bearing capacity, but enhances the local stability of the structure. In addition, setting stiffening ring and meridian rib on the cooling tower significantly improves the whole, local buckling and construction whole process stability and ultimate bearing capacity of the cooling tower.