globalchange  > 气候变化事实与影响
CSCD记录号: CSCD:6233431
论文题名:
基于BP神经网络和遗传算法的机箱壳注塑工艺参数多目标优化
其他题名: Multiple Objective Optimization of Injection Molding Parameters for Chassis Shell Based on BP Neural Network and Genetic Algorithm
作者: 郝彦琴1; 龙春光2
刊名: 工程塑料应用
ISSN: 1001-3539
出版年: 2018
卷: 46, 期:3, 页码:69-75,111
语种: 中文
中文关键词: Moldflow分析 ; Taguchi试验法 ; BP神经网络 ; 遗传算法 ; 多目标优化 ; 注塑工艺
英文关键词: Moldflow analysis ; Taguchi test ; BP neural network ; genetic algorithm ; multi-objective optimization ; injection molding process
WOS学科分类: ENGINEERING CHEMICAL
WOS研究方向: Engineering
中文摘要: 以注射成型机箱壳为例,构建制品CAE分析模型,运用Moldflow仿真分析,预测制品缺陷,并选定了优化因素与指标;运用Taguchi试验法和CAE仿真获得数据样本,通过模糊加权综合评分将多目标问题转化为单目标优化;建立了BP神经网络集预测模型,映射了工艺参数与质量指标的非线性关系;采纳遗传算法进行全局寻优,得到试验范围内的最优工艺参数:模具温度为66.3℃,熔体温度为227℃,填充时间为4.6 s,保压压力为填充压力的109%,保压时间为10.2 s,冷却时间为22.7 s。对优化结果进行CAE分析验证,结果表明,神经网络预测结果与CAE模流分析结果相近,实现了制品质量指标的多目标优化。该优化设计方法能有效提高制品质量,缩短生产周期。
英文摘要: Taking the chassis shell as an example,the product CAE analysis model was built,and the Moldflow software was used to analysis the product defect,and the optimized factors and indicators were selected. The data samples was obtained from using Taguchi test analysis and CAE simulation,through fuzzy comprehensive quality weighted evaluation analysis it would be useful to effectively resolve that the multi-objective problem was transformed into the single objective optimization problem. The BP neural network prediction model was established,mapping the nonlinear relationship of the process parameters and the quality index. Adopted the genetic algorithm for global optimization,the optimal process parameters within the test scope are as follow:mold temperature is 66.3℃,melt temperature is 227℃,filling time is 4.6 s,holding pressure is 109% of the filling pressure,holding time is 10.2 s,cooling time is 22.7 s. The optimization results were verified by CAE analysis,the results show that the prediction results of neural network are similar to the analysis of CAE software Moldflow,and the multi-objective optimization for the products quality indicators are achieved. The optimization design method can improve the quality of products and shorten the production cycle.
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/157750
Appears in Collections:气候变化事实与影响

Files in This Item:

There are no files associated with this item.


作者单位: 1.怀化职业技术学院
2.长沙理工大学,
3., 怀化
4.长沙, 湖南
5.418000
6.410000, 中国
7.长沙理工大学, 长沙, 湖南 410000, 中国

Recommended Citation:
郝彦琴,龙春光. 基于BP神经网络和遗传算法的机箱壳注塑工艺参数多目标优化[J]. 工程塑料应用,2018-01-01,46(3):69-75,111
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[郝彦琴]'s Articles
[龙春光]'s Articles
百度学术
Similar articles in Baidu Scholar
[郝彦琴]'s Articles
[龙春光]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[郝彦琴]‘s Articles
[龙春光]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.