DOI: 10.5194/hess-23-4909-2019
论文题名: Groundwater influence on soil moisture memory and land-atmosphere fluxes in the Iberian Peninsula
作者: Martínez-De La Torre A. ; Miguez-Macho G.
刊名: Hydrology and Earth System Sciences
ISSN: 1027-5606
出版年: 2019
卷: 23, 期: 12 起始页码: 4909
结束页码: 4932
语种: 英语
Scopus关键词: Climate models
; Drought
; Groundwater resources
; Rivers
; Soil moisture
; Surface measurement
; Climate model simulations
; Convective precipitation
; Groundwater modeling
; Groundwater process
; Land surface models
; Land-atmosphere couplings
; Shallow water tables
; Soil moisture distribution
; Recharging (underground waters)
; air-soil interaction
; climate modeling
; evapotranspiration
; seasonal variation
; semiarid region
; shallow water
; soil moisture
; water table
; Andalucia
; Guadalquivir Basin
; Iberian Peninsula
; Segura River
; Spain
英文摘要: Groundwater plays an important role in the terrestrial water cycle, interacting with the land surface via vertical fluxes through the water table and distributing water resources spatially via gravity-driven lateral transport. It is therefore essential to have a correct representation of groundwater processes in land surface models, as land-atmosphere coupling is a key factor in climate research. Here we use the LEAFHYDRO land surface and groundwater model to study the groundwater influence on soil moisture distribution and memory, and evapotranspiration (ET) fluxes in the Iberian Peninsula over a 10-year period. We validate our results with time series of observed water table depth from 623 stations covering different regions of the Iberian Peninsula, showing that the model produces a realistic water table, shallower in valleys and deeper under hilltops. We find patterns of shallow water table and strong groundwater-land surface coupling over extended interior semi-arid regions and river valleys. We show a strong seasonal and interannual persistence of the water table, which induces bimodal memory in the soil moisture fields; soil moisture "remembers" past wet conditions, buffering drought effects, and also past dry conditions, causing a delay in drought recovery. The effects on land-atmosphere fluxes are found to be significant: on average over the region, ET is 17.4 % higher when compared with a baseline simulation with LEAFHYDRO's groundwater scheme deactivated. The maximum ET increase occurs in summer (34.9 %; 0.54 mm d-1 ). The ET enhancement is larger over the drier southern basins, where ET is water limited (e.g. the Guadalquivir basin and the Mediterranean Segura basin), than in the northern Miño/Minho basin, where ET is more energy limited than water limited. In terms of river flow, we show how dry season baseflow is sustained by groundwater originating from accumulated recharge during the wet season, improving significantly on a free-drain approach, where baseflow comes from water draining through the top soil, resulting in rivers drying out in summer. Convective precipitation enhancement through local moisture recycling over the semi-arid interior regions and summer cooling are potential implications of these groundwater effects on climate over the Iberian Peninsula. Fully coupled land surface and climate model simulations are needed to elucidate this question. © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/162843
Appears in Collections: 气候变化与战略
There are no files associated with this item.
作者单位: Martínez-De La Torre, A., Nonlinear Physics Group, Faculty of Physics, Universidade de Santiago de Compostela, Santiago de Compostela, Spain, Centre for Ecology and Hydrology, Wallingford, United Kingdom; Miguez-Macho, G., Nonlinear Physics Group, Faculty of Physics, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
Recommended Citation:
Martínez-De La Torre A.,Miguez-Macho G.. Groundwater influence on soil moisture memory and land-atmosphere fluxes in the Iberian Peninsula[J]. Hydrology and Earth System Sciences,2019-01-01,23(12)