globalchange  > 气候变化与战略
DOI: 10.5194/hess-22-4425-2018
论文题名:
How can expert knowledge increase the realism of conceptual hydrological models? A case study based on the concept of dominant runoff process in the Swiss Pre-Alps
作者: Antonetti M.; Zappa M.
刊名: Hydrology and Earth System Sciences
ISSN: 1027-5606
出版年: 2018
卷: 22, 期:8
起始页码: 4425
结束页码: 4447
语种: 英语
Scopus关键词: Catchments ; Chains ; Inverse problems ; Knowledge management ; Precipitation (meteorology) ; Radar stations ; Runoff ; Spatial distribution ; Uncertainty analysis ; Compensation effects ; Dominant runoff process ; Inverse distance weighting method ; Long duration events ; Qualitative knowledge ; Quantitative estimation ; Short duration events ; Uncertainty sources ; Analysis of variance (ANOVA) ; accuracy assessment ; catchment ; conceptual framework ; ground-based measurement ; hydrological modeling ; interpolation ; knowledge ; parameterization ; precipitation (climatology) ; qualitative analysis ; radar ; runoff ; spatial distribution ; Alps ; Switzerland
英文摘要: Both modellers and experimentalists agree that using expert knowledge can improve the realism of conceptual hydrological models. However, their use of expert knowledge differs for each step in the modelling procedure, which involves hydrologically mapping the dominant runoff processes (DRPs) occurring on a given catchment, parameterising these processes within a model, and allocating its parameters. Modellers generally use very simplified mapping approaches, applying their knowledge in constraining the model by defining parameter and process relational rules. In contrast, experimentalists usually prefer to invest all their detailed and qualitative knowledge about processes in obtaining as realistic spatial distribution of DRPs as possible, and in defining narrow value ranges for each model parameter.

Runoff simulations are affected by equifinality and numerous other uncertainty sources, which challenge the assumption that the more expert knowledge is used, the better will be the results obtained. To test for the extent to which expert knowledge can improve simulation results under uncertainty, we therefore applied a total of 60 modelling chain combinations forced by five rainfall datasets of increasing accuracy to four nested catchments in the Swiss Pre-Alps. These datasets include hourly precipitation data from automatic stations interpolated with Thiessen polygons and with the inverse distance weighting (IDW) method, as well as different spatial aggregations of Combiprecip, a combination between ground measurements and radar quantitative estimations of precipitation. To map the spatial distribution of the DRPs, three mapping approaches with different levels of involvement of expert knowledge were used to derive so-called process maps. Finally, both a typical modellers' top-down set-up relying on parameter and process constraints and an experimentalists' set-up based on bottom-up thinking and on field expertise were implemented using a newly developed process-based runoff generation module (RGM-PRO). To quantify the uncertainty originating from forcing data, process maps, model parameterisation, and parameter allocation strategy, an analysis of variance (ANOVA) was performed.

The simulation results showed that (i) the modelling chains based on the most complex process maps performed slightly better than those based on less expert knowledge; (ii) the bottom-up set-up performed better than the top-down one when simulating short-duration events, but similarly to the top-down set-up when simulating long-duration events; (iii) the differences in performance arising from the different forcing data were due to compensation effects; and (iv) the bottom-up set-up can help identify uncertainty sources, but is prone to overconfidence problems, whereas the top-down set-up seems to accommodate uncertainties in the input data best. Overall, modellers' and experimentalists' concept of "model realism" differ. This means that the level of detail a model should have to accurately reproduce the DRPs expected must be agreed in advance. © Author(s) 2018.

Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/163218
Appears in Collections:气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: Antonetti, M., Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland, Department of Geography, University of Zurich, Zurich, 8057, Switzerland; Zappa, M., Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland

Recommended Citation:
Antonetti M.,Zappa M.. How can expert knowledge increase the realism of conceptual hydrological models? A case study based on the concept of dominant runoff process in the Swiss Pre-Alps[J]. Hydrology and Earth System Sciences,2018-01-01,22(8)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Antonetti M.]'s Articles
[Zappa M.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Antonetti M.]'s Articles
[Zappa M.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Antonetti M.]‘s Articles
[Zappa M.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.