globalchange  > 气候变化与战略
DOI: 10.1007/s11069-020-03913-0
论文题名:
Rainfall-Induced Landslides forecast using local precipitation and global climate indexes
作者: Fustos I.; Abarca-del-Rio R.; Moreno-Yaeger P.; Somos-Valenzuela M.
刊名: Natural Hazards
ISSN: 0921030X
出版年: 2020
卷: 102, 期:1
起始页码: 115
结束页码: 131
语种: 英语
中文关键词: ENSO-AAO variability ; logistic regression ; Rainfall-Induced Landslides
英文关键词: air-sea interaction ; climate effect ; El Nino-Southern Oscillation ; forecasting method ; global climate ; landslide ; precipitation (climatology) ; rainfall ; regional climate ; regression analysis ; Chile ; Pacific Ocean ; Pacific Ocean (South)
英文摘要: We analyse RIL events between 1950 and 2002 to investigate the role played by climate variability, using the “El Niño-Southern Oscillation” (ENSO), the Antarctic Oscillation (AAO) and local precipitation as predictors, through logistic and probabilistic (Logit and Probit) modelling. From the probabilistic regression analysis, it is clear that rain plays a major role, since its weight in the regression is almost 50%. However, we show that integrating South Pacific climate variability represented by ENSO/AAO significantly increases predictability, reaching over 87%. Moreover, sensitivity and specificity analyses confirm that although local rainfall is the main triggering factor, adding the two macroclimate variables increases the ability to predict true positive and negative occurrences by almost 80%. This confirms the need to integrate macroclimatic variables to make assertive local predictions. Surprisingly, and contrary to what might have been expected considering ENSO's recognized role in regional climate variability, the integration of AAO variability significantly improves RIL prediction capacity, while on average ENSO can be considered a second-order predictor. These results, obtained through a simple logistic regression methodology (Logit and/or Probit), can contribute to better risk management in the middle-latitude zones of Chile. The methodology can be extended to other areas of the world that do not have high-density hydrometeorological information to support preventive decision-making through logistic RIL forecasting. © 2020, Springer Nature B.V.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/168497
Appears in Collections:气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: Departamento de Ingeniería en Obras Civiles, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Francisco Salazar 01145, Temuco, 4780000, Chile; Departamento de Geofísica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción, Chile; Departamento de Ingeniería en Obras Civiles y Geología, Universidad Católica de Temuco, Temuco, Chile; Department of Geoscience, University of Wisconsin-Madison, 1215 West Dayton Street, Madison, WI 53706, United States; Department of Forest Sciences, Faculty of Agriculture and Forest Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, 4780000, Chile; Butamallin Research Center for Global Change, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, 4780000, Chile

Recommended Citation:
Fustos I.,Abarca-del-Rio R.,Moreno-Yaeger P.,et al. Rainfall-Induced Landslides forecast using local precipitation and global climate indexes[J]. Natural Hazards,2020-01-01,102(1)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Fustos I.]'s Articles
[Abarca-del-Rio R.]'s Articles
[Moreno-Yaeger P.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Fustos I.]'s Articles
[Abarca-del-Rio R.]'s Articles
[Moreno-Yaeger P.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Fustos I.]‘s Articles
[Abarca-del-Rio R.]‘s Articles
[Moreno-Yaeger P.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.