globalchange  > 过去全球变化的重建
DOI: 10.1371/journal.pone.0118409
论文题名:
Transition of Eocene Whales from Land to Sea: Evidence from Bone Microstructure
作者: Alexandra Houssaye; Paul Tafforeau; Christian de Muizon; Philip D. Gingerich
刊名: PLOS ONE
ISSN: 1932-6203
出版年: 2015
发表日期: 2015-2-25
卷: 10, 期:2
语种: 英语
英文关键词: Ribs ; Femur ; Vertebrae ; Humerus ; Swimming ; Amniotes ; Diaphyses ; Eocene epoch
英文摘要: Cetacea are secondarily aquatic amniotes that underwent their land-to-sea transition during the Eocene. Primitive forms, called archaeocetes, include five families with distinct degrees of adaptation to an aquatic life, swimming mode and abilities that remain difficult to estimate. The lifestyle of early cetaceans is investigated by analysis of microanatomical features in postcranial elements of archaeocetes. We document the internal structure of long bones, ribs and vertebrae in fifteen specimens belonging to the three more derived archaeocete families — Remingtonocetidae, Protocetidae, and Basilosauridae — using microtomography and virtual thin-sectioning. This enables us to discuss the osseous specializations observed in these taxa and to comment on their possible swimming behavior. All these taxa display bone mass increase (BMI) in their ribs, which lack an open medullary cavity, and in their femora, whereas their vertebrae are essentially spongious. Humeri and femora show opposite trends in microanatomical specialization in the progressive independence of cetaceans from a terrestrial environment. Humeri change from very compact to spongious, which is in accordance with the progressive loss of propulsive role for the forelimbs, which were used instead for steering and stabilizing. Conversely, hind-limbs in basilosaurids became strongly reduced with no involvement in locomotion but display strong osteosclerosis in the femora. Our study confirms that Remingtonocetidae and Protocetidae were almost exclusively aquatic in locomotion for the taxa sampled, which probably were shallow water suspended swimmers. Basilosaurids display osseous specializations similar to those of modern cetaceans and are considered more active open-sea swimmers. This study highlights the strong need for homologous sections in comparative microanatomical studies, and the importance of combining information from several bones of the same taxon for improved functional interpretation.
URL: http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0118409&type=printable
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/21631
Appears in Collections:过去全球变化的重建
影响、适应和脆弱性
科学计划与规划
气候变化与战略
全球变化的国际研究计划
气候减缓与适应
气候变化事实与影响

Files in This Item:

There are no files associated with this item.


作者单位: UMR 7179 CNRS/Muséum National d’Histoire Naturelle, Département Ecologie et Gestion de la Biodiversité, Paris, France;Steinmann Institut für Geologie, Paläontologie und Mineralogie, Universität Bonn, Bonn, Germany;European Synchrotron Radiation Facility, Grenoble, France;Sorbonne Universités, CR2P—CNRS, MNHN, UPMC-Paris 6, Département Histoire de la Terre, Muséum National d’Histoire Naturelle, Paris, France;Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, United States of America

Recommended Citation:
Alexandra Houssaye,Paul Tafforeau,Christian de Muizon,et al. Transition of Eocene Whales from Land to Sea: Evidence from Bone Microstructure[J]. PLOS ONE,2015-01-01,10(2)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Alexandra Houssaye]'s Articles
[Paul Tafforeau]'s Articles
[Christian de Muizon]'s Articles
百度学术
Similar articles in Baidu Scholar
[Alexandra Houssaye]'s Articles
[Paul Tafforeau]'s Articles
[Christian de Muizon]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Alexandra Houssaye]‘s Articles
[Paul Tafforeau]‘s Articles
[Christian de Muizon]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.