globalchange  > 过去全球变化的重建
DOI: 10.1371/journal.pone.0139931
论文题名:
A Fast Incremental Gaussian Mixture Model
作者: Rafael Coimbra Pinto; Paulo Martins Engel
刊名: PLOS ONE
ISSN: 1932-6203
出版年: 2015
发表日期: 2015-10-7
卷: 10, 期:10
语种: 英语
英文关键词: Algorithms ; Machine learning algorithms ; Covariance ; Machine learning ; Neural networks ; Ionosphere ; Soybean ; Data reduction
英文摘要: This work builds upon previous efforts in online incremental learning, namely the Incremental Gaussian Mixture Network (IGMN). The IGMN is capable of learning from data streams in a single-pass by improving its model after analyzing each data point and discarding it thereafter. Nevertheless, it suffers from the scalability point-of-view, due to its asymptotic time complexity of O(NKD3) for N data points, K Gaussian components and D dimensions, rendering it inadequate for high-dimensional data. In this work, we manage to reduce this complexity to O(NKD2) by deriving formulas for working directly with precision matrices instead of covariance matrices. The final result is a much faster and scalable algorithm which can be applied to high dimensional tasks. This is confirmed by applying the modified algorithm to high-dimensional classification datasets.
URL: http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0139931&type=printable
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/21797
Appears in Collections:过去全球变化的重建
影响、适应和脆弱性
科学计划与规划
气候变化与战略
全球变化的国际研究计划
气候减缓与适应
气候变化事实与影响

Files in This Item:
File Name/ File Size Content Type Version Access License
journal.pone.0139931.PDF(330KB)期刊论文作者接受稿开放获取View Download

作者单位: Instituto de Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil;Instituto de Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

Recommended Citation:
Rafael Coimbra Pinto,Paulo Martins Engel. A Fast Incremental Gaussian Mixture Model[J]. PLOS ONE,2015-01-01,10(10)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Rafael Coimbra Pinto]'s Articles
[Paulo Martins Engel]'s Articles
百度学术
Similar articles in Baidu Scholar
[Rafael Coimbra Pinto]'s Articles
[Paulo Martins Engel]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Rafael Coimbra Pinto]‘s Articles
[Paulo Martins Engel]‘s Articles
Related Copyright Policies
Null
收藏/分享
文件名: journal.pone.0139931.PDF
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.