globalchange  > 过去全球变化的重建
DOI: 10.2172/1088043
报告号: DOESC0005211-F
报告题名:
Final Report: Phase II Nevada Water Resources Data, Modeling, and Visualization (DMV) Center
作者: Jackman, Thomas [Desert Research Institute]; Minor, Timothy [Desert Research Institute]; Pohll, Gregory [Desert Research Institute]
出版年: 2013
发表日期: 2013-07-22
国家: 美国
语种: 英语
中文主题词: 基础设施 ; 人口 ; 地形学 ; 地表水 ; 径流
主题词: INFRASTRUCTURE ; POPULATION ; TOPOGRAPHY ; SURFACE WATER ; RUNOFF
英文摘要: Water is unquestionably a critical resource throughout the United States. In the semi-arid west -- an area stressed by increase in human population and sprawl of the built environment -- water is the most important limiting resource. Crucially, science must understand factors that affect availability and distribution of water. To sustain growing consumptive demand, science needs to translate understanding into reliable and robust predictions of availability under weather conditions that could be average but might be extreme. These predictions are needed to support current and long-term planning. Similar to the role of weather forecast and climate prediction, water prediction over short and long temporal scales can contribute to resource strategy, governmental policy and municipal infrastructure decisions, which are arguably tied to the natural variability and unnatural change to climate. Change in seasonal and annual temperature, precipitation, snowmelt, and runoff affect the distribution of water over large temporal and spatial scales, which impact the risk of flooding and the groundwater recharge. Anthropogenic influences and impacts increase the complexity and urgency of the challenge. The goal of this project has been to develop a decision support framework of data acquisition, digital modeling, and 3D visualization. This integrated framework consists of tools for compiling, discovering and projecting our understanding of processes that control the availability and distribution of water. The framework is intended to support the analysis of the complex interactions between processes that affect water supply, from controlled availability to either scarcity or deluge. The developed framework enables DRI to promote excellence in water resource management, particularly within the Lake Tahoe basin. In principle, this framework could be replicated for other watersheds throughout the United States. Phase II of this project builds upon the research conducted during Phase I, in which the hydrologic framework was investigated and the development initiated. Phase II concentrates on practical implementation of the earlier work but emphasizes applications to the hydrology of the Lake Tahoe basin. Phase 1 efforts have been refined and extended by creating a toolset for geographic information systems (GIS) that is usable for disparate types of geospatial and geo-referenced data. The toolset is intended to serve multiple users for a variety of applications. The web portal for internet access to hydrologic and remotely sensed product data, prototyped in Phase I, has been significantly enhanced. The portal provides high performance access to LANDSAT-derived data using techniques developed during the course of the project. The portal is interactive, and supports the geo-referenced display of hydrologic information derived from remotely sensed data, such as various vegetative indices used to calculate water consumption. The platform can serve both internal and external constituencies using inter-operating infrastructure that spans both sides of the DRI firewall. The platform is intended grow its supported data assets and to serve as a template for replication to other geographic areas. An unanticipated development during the project was the use of ArcGIS software on a new computer system, called the IBM PureSytems, and the parallel use of the systems for faster, more efficient image processing. Additional data, independent of the portal, was collected within the Sagehen basin and provides detailed information regarding the processes that control hydrologic responses within mountain watersheds. The newly collected data include elevation, evapotranspiration, energy balance and remotely sensed snow-pack data. A Lake Tahoe basin hydrologic model has been developed, in part to help predict the hydrologic impacts of climate change. The model couples both the surface and subsurface hydrology, with the two components having been independently calibrated. Results from the coupled simulations involving both surface water and groundwater processes show that it is possible to fairly accurately simulate lake effects and water budget variables over a wide range of dry and wet cycles in the historical record. The Lake Tahoe basin is representative of the hydrology, topography and climate throughout the Sierra Nevada Range, and the entire model development is prototypical of the efforts required to replicate the decision support framework to other locales. The Lake Tahoe model in particular, could allow water managers to evaluate more accurately components of the water budget (ET, runoff, groundwater, etc) and to answer important questions regarding water resources in northern Nevada. This report discusses the geographic scale and the hydrologic complexity of the calibrated model developed as part of this project, as well as simulation results for historical and future climate projects To enable human-driven data exploration and discovery, de novo software for a globalized rendering module that extends the capability of our evolving custom visualization engine from Phase I (called SMEngine) has been developed. The new rendering component, called Horizon, supports terrain rendering capable of displaying and interrogating both remotely sensed and modeled data. The development of Horizon necessitated adaptation of the visualization engine to allow extensible integration of components such as the global rendering module and support for associated features. The resulting software is general in its GIS capability, but a specific Lake Tahoe visualization application suitable for immersive decision support in the DRIVE6 virtual reality facility has been developed. During the development, various features to enhance the value of the visualization experience were explored, including the use of hyperspectral image overlays. An over-arching goal of the visualization aspect of the project has been to develop and demonstrate the CAVE (CAVE Automatic Virtual Environment) as a practical tool for hydrologic research.
URL: http://www.osti.gov/scitech/servlets/purl/1088043
Citation statistics:
资源类型: 研究报告
标识符: http://119.78.100.158/handle/2HF3EXSE/41064
Appears in Collections:过去全球变化的重建
影响、适应和脆弱性
科学计划与规划
气候变化与战略
全球变化的国际研究计划
气候减缓与适应
气候变化事实与影响

Files in This Item: Download All
File Name/ File Size Content Type Version Access License
1088043.pdf(6911KB)研究报告--开放获取View Download

Recommended Citation:
Jackman, Thomas [Desert Research Institute],Minor, Timothy [Desert Research Institute],Pohll, Gregory [Desert Research Institute]. Final Report: Phase II Nevada Water Resources Data, Modeling, and Visualization (DMV) Center. 2013-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Jackman, Thomas [Desert Research Institute]]'s Articles
[Minor, Timothy [Desert Research Institute]]'s Articles
[Pohll, Gregory [Desert Research Institute]]'s Articles
百度学术
Similar articles in Baidu Scholar
[Jackman, Thomas [Desert Research Institute]]'s Articles
[Minor, Timothy [Desert Research Institute]]'s Articles
[Pohll, Gregory [Desert Research Institute]]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Jackman, Thomas [Desert Research Institute]]‘s Articles
[Minor, Timothy [Desert Research Institute]]‘s Articles
[Pohll, Gregory [Desert Research Institute]]‘s Articles
Related Copyright Policies
Null
收藏/分享
文件名: 1088043.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.