DOI: 10.1175/JCLI-D-16-0273.1
Scopus记录号: 2-s2.0-84996841905
论文题名: Tropical cyclone intensity errors associated with lack of two-way ocean coupling in high-resolution global simulations
作者: Zarzycki C.M.
刊名: Journal of Climate
ISSN: 8948755
出版年: 2016
卷: 29, 期: 23 起始页码: 8589
结束页码: 8610
语种: 英语
Scopus关键词: Atmospheric temperature
; Atmospheric thermodynamics
; Climate models
; Climatology
; Computation theory
; Hurricanes
; Storms
; Surface waters
; Tropics
; Wakes
; Atmosphere-ocean interactions
; General circulation model
; Multi-grid model
; Numerical analysis/modeling
; Tropical cyclone
; Oceanography
英文摘要: Tropical cyclones (TCs), particularly those that are intense and/or slow moving, induce sea surface temperature (SST) reductions along their tracks (commonly referred to as cold wakes) that provide a negative feedback on storm energetics by weakening surface enthalpy fluxes. While computing gains have allowed for simulated TC intensity to increase in global climate models as a result of increased horizontal resolution, many configurations utilize prescribed, noninteractive SSTs as a surface boundary condition to minimize computational cost and produce more accurate TC climatologies. Here, an idealized slab ocean is coupled to a 0.25° variable-resolution version of the Community Atmosphere Model (CAM) to improve closure of the surface energy balance and reproduce observed Northern Hemisphere cold wakes. This technique produces cold wakes that are realistic in structure and evolution and with magnitudes similar to published observations, without impacting large-scale SST climatology. Multimember ensembles show that the overall number of TCs generated by the model is reduced by 5%-9% when allowing for two-way air-sea interactions. TC intensity is greatly impacted; the strongest 1% of all TCs are 20-30 hPa (4-8 m s-1) weaker, and the number of simulated Saffir-Simpson category 4 and 5 TCs is reduced by 65% in slab ocean configurations. Reductions in intensity are in line with published thermodynamic theory. Additional offline experiments and sensitivity simulations demonstrate this response is both significant and robust. These results imply caution should be exercised when assessing high-resolution prescribed SST climate simulations capable of resolving intense TCs, particularly if discrete analysis of extreme events is desired. © 2016 American Meteorological Society.
资助项目: NSF, National Science Foundation
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/50106
Appears in Collections: 气候变化事实与影响
There are no files associated with this item.
作者单位: National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO, United States
Recommended Citation:
Zarzycki C.M.. Tropical cyclone intensity errors associated with lack of two-way ocean coupling in high-resolution global simulations[J]. Journal of Climate,2016-01-01,29(23)