globalchange  > 气候变化事实与影响
DOI: 10.1175/JCLI-D-15-0306.1
Scopus记录号: 2-s2.0-84946221754
论文题名:
A vector autoregressive ENSO prediction model
作者: Chapman D.; Cane M.A.; Henderson N.; Lee D.E.; Chen C.
刊名: Journal of Climate
ISSN: 8948755
出版年: 2015
卷: 28, 期:21
起始页码: 8511
结束页码: 8520
语种: 英语
Scopus关键词: Atmospheric pressure ; Atmospheric temperature ; Climatology ; Forecasting ; Inverse problems ; Oceanography ; Surface waters ; Value engineering ; Auto-regressive ; ENSO prediction models ; Inverse methods ; Sea surface temperature anomalies ; Southern oscillation ; State vector ; VAR models ; Vector autoregressive model ; Vectors ; climate modeling ; climate prediction ; El Nino-Southern Oscillation ; hindcasting ; sea surface temperature ; vector autoregression ; weather forecasting
英文摘要: The authors investigate a sea surface temperature anomaly (SSTA)-only vector autoregressive (VAR) model for prediction of El Niño-Southern Oscillation (ENSO). VAR generalizes the linear inverse method (LIM) framework to incorporate an extended state vector including many months of recent prior SSTA in addition to the present state. An SSTA-only VAR model implicitly captures subsurface forcing observable in the LIM residual as red noise. Optimal skill is achieved using a state vector of order 14-17 months in an exhaustive 120-yr cross-validated hindcast assessment. It is found that VAR outperforms LIM, increasing forecast skill by 3 months, in a 30-yr retrospective forecast experiment. © 2015 American Meteorological Society.
资助项目: ONR, Office of Naval Research
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/50669
Appears in Collections:气候变化事实与影响

Files in This Item:

There are no files associated with this item.


作者单位: Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States

Recommended Citation:
Chapman D.,Cane M.A.,Henderson N.,et al. A vector autoregressive ENSO prediction model[J]. Journal of Climate,2015-01-01,28(21)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Chapman D.]'s Articles
[Cane M.A.]'s Articles
[Henderson N.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Chapman D.]'s Articles
[Cane M.A.]'s Articles
[Henderson N.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Chapman D.]‘s Articles
[Cane M.A.]‘s Articles
[Henderson N.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.