英文摘要: | Extensive clearing of Indonesian primary forests results in increased greenhouse gas emissions and biodiversity loss. However, there is no consensus on the areal extent and temporal trends of primary forest clearing in Indonesia. Here we report a spatially and temporally explicit quantification of Indonesian primary forest loss, which totalled over 6.02 Mha from 2000 to 2012 and increased on average by 47,600 ha per year. By 2012, annual primary forest loss in Indonesia was estimated to be higher than in Brazil (0.84 Mha and 0.46 Mha, respectively). Proportional loss of primary forests in wetland landforms increased and almost all clearing of primary forests occurred within degraded types, meaning logging preceded conversion processes. Loss within official forest land uses that restrict or prohibit clearing totalled 40% of all loss within national forest land. The increasing loss of Indonesian primary forests has significant implications for climate change mitigation and biodiversity conservation efforts.
Tropical deforestation from developing countries1, including Indonesia2, 3, contributes to emissions of greenhouse gases, principally carbon dioxide, the primary driver of global warming1, 3. Primary forest clearing also results in the loss of biodiversity due to the destruction of unique tropical forest habitats4, 5, 6. Present understanding of forest change within Indonesia lacks consensus. The United Nations Food and Agricultural Organization’s (UNFAO) Forest Resource Assessment 2010 reported the rate of forest loss in Indonesia to be 0.31 Mha per year from 2000 to 2005 and 0.69 Mha per year from 2005 to 2010 (refs 7, 8). Indonesia’s second communication to the United Nations Framework Convention on Climate Change in 2009 reported a forest loss rate of 1.1 Mha per year from 2000 to 2005 (refs 9, 10). A more recent estimate of 0.40 Mha per year of forest loss from 2009 to 2011 was reported by the Indonesian Ministry of Forestry11. The variation in estimates points to the need for thematic consistency and improved spatio-temporal data in bringing transparency to this important land change dynamic. A recent study that spatially explicitly mapped global gross forest cover change found Indonesia to be the country with the highest rate of increasing forest cover loss from 2000 to 2012 (ref. 12). However, the results were based on forests as defined by tree cover and included commercial forestry dynamics in the quantification of forest loss. In other words, the clearing of pulp plantations and oil palm estates as well as primary forest was included in tabulating forest cover loss. In the context of climate change, it is critically important to know the context of forest disturbance, whether of a high-biomass natural forest or a short-cycle plantation. Similarly, the clearing of natural forest versus managed forest has very different implications on the maintenance of biodiversity richness. Indonesia poses a particular challenge in the tropical deforestation context. Deforestation, as defined by the replacement of natural forest by non-forestry-related land uses, is widespread in Indonesia. However, natural forest cover is also frequently replaced by commercially managed forest/tree cover in the form of plantations or oil palm estates, resulting in a complicated landscape of forest cover change. The objective of the presented study is to bring improved context to the Indonesian forest cover change dynamic by quantifying the portion of gross forest cover loss that occurred within primary forests from 2000 through 2012.
Our study combines the global gross forest loss data of ref. 12 with an extension of the work of refs 13, 14 in disaggregating total forest cover loss by primary/non-primary status and landform for all of Indonesia. Primary forest is defined as mature natural forests of 5 ha or more15 in extent that retain their natural composition and structure, and have not been completely cleared and re-planted in recent history, including both intact and degraded types4, 13. Intact primary forests have no detectable signs of human-caused alteration or fragmentation and are delineated as per the Intact Forest Landscape method of ref. 16. Primary degraded forests are primary forests that have been fragmented or subjected to forest utilization, for example, by selective logging or other human disturbances that have led to partial canopy loss and altered forest composition and structure13, 17. Primary forests, consisting of intact and degraded types, were mapped for the year 2000 and their loss quantified through the end of 2012 and disaggregated by landform, specifically wetland, and terra firma lowland, upland and montane formations. Primary forest cover loss in general and within wetlands in particular is important for greenhouse gas accounting efforts. Primary forests are the largest above-ground carbon stores in the world18 and peatlands the largest reservoirs of soil carbon19, 20, 21. Indonesia’s primary lowland forests have long been threatened by deforestation and forest degradation5, 22, 23. Easy access to lowland forest has made primary forests a target for logging and the subsequent conversion to higher value land uses5. Wetland forests in Indonesia have historically remained largely intact24. However, during the past two decades the conversion of wetland forests, including peatlands, to agro-industrial land uses has increased24, 25, 26, 27. The high rates of primary forest loss, including intact and degraded types13, coupled with the high carbon stocks in above-ground and below-ground pools18 has made Indonesia the third largest global emitter of carbon dioxide3. In addition, Indonesia’s forests contain high floral and faunal biodiversity28, 29, 30 including 10% of the world’s plants, 12% of the world’s mammals, 16% of the world’s reptile–amphibians, and 17% of the world’s bird species31. The forest’s high biodiversity places Indonesia among the world’s mega-diverse countries32; extensive clearing of Indonesian primary forest cover directly results in habitat loss and associated plant and animal extinctions4, 28. Explicit characterization of the spatio-temporal variation of primary forest loss will inform biodiversity modelling efforts from national to local scales.
Of the 15.79 Mha of forest cover loss for Indonesia reported in ref. 12 for the period 2000–2012, 38% or 6.02 Mha occurred within primary intact or degraded forests. Annual primary forest cover loss increased over the study period with the highest total primary forest cover loss having occurred in 2012, the last year of the study. Primary forest loss in 2012 totalled 0.84 Mha, more than the reported forest loss of Brazil (0.46 Mha; ref. 33), the historical leader in the clearing of tropical forest. Figure 1 illustrates the final results in map form. Figure 2 depicts annual primary forest loss for Indonesia as a whole and for its main island groups. Supplementary Fig. 1 depicts Indonesian primary forest loss totals by year from this study compared with official Indonesia government data9, 10, 11, UNFAO data for Indonesia7, 8 and Brazil’s PRODES deforestation data33, 34, 35, 36, with all data sets estimating primary forest cover loss (Supplementary Methods for definitions used as a basis for intercomparison). Results from this study show that Indonesia experienced an average annual increase of 47,600 ha of primary forest cover loss, which is more than any other tropical country’s increase in annual forest cover loss from the study in ref. 12. Disaggregating the results by landform, 3.04 Mha, or 51% of total primary forest cover loss, occurred in lowland landforms, whereas 2.60 Mha, or 43%, occurred in wetland landforms. The overall trend in increasing wetland primary forest loss was greater than lowland primary forest cover loss. Of the annual increase in primary forest loss over the study period, 25,700 ha occurred in wetlands and 20,900 ha in adjacent dry lowlands. The ratio of lowland to wetland forest loss was 2.3 in 2001 and 1.1 in 2012.
|