DOI: 10.1175/JCLI-D-14-00197.1
Scopus记录号: 2-s2.0-84942897787
论文题名: A hybrid dynamical-statistical downscaling technique. Part II: End-of-Century warming projections predict a new climate state in the Los Angeles region
作者: Sun F. ; Walton D.B. ; Hall A.
刊名: Journal of Climate
ISSN: 8948755
出版年: 2015
卷: 28, 期: 12 起始页码: 4618
结束页码: 4636
语种: 英语
Scopus关键词: Climate models
; Emission control
; Gas emissions
; Greenhouse gases
; Temperature
; Uncertainty analysis
; Coupled Model Intercomparison Project
; Greenhouse gas emission reduction
; Interannual variability
; Nighttime temperatures
; Numerical analysis/modeling
; Regional model
; Statistical downscaling
; Statistical techniques
; Climate change
; air temperature
; climate change
; climate modeling
; climate prediction
; downscaling
; numerical model
; regional climate
; California
; Los Angeles [California]
; United States
英文摘要: Using the hybrid downscaling technique developed in part I of this study, temperature changes relative to a baseline period (1981-2000) in the greater Los Angeles region are downscaled for two future time slices: midcentury (2041-60) and end of century (2081-2100). Two representative concentration pathways (RCPs) are considered, corresponding to greenhouse gas emission reductions over coming decades (RCP2.6) and to continued twenty-first-century emissions increases (RCP8.5). All available global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are downscaled to provide likelihood and uncertainty estimates. By the end of century under RCP8.5, a distinctly new regional climate state emerges: average temperatures will almost certainly be outside the interannual variability range seen in the baseline. Except for the highest elevations and a narrow swath very near the coast, land locations will likely see 60-90 additional extremely hot days per year, effectively adding a new season of extreme heat. In mountainous areas, a majority of the many baseline days with freezing nighttime temperatures will most likely not occur. According to a similarity metric that measures daily temperature variability and the climate change signal, the RCP8.5 end-of-century climate will most likely be only about 50% similar to the baseline. For midcentury under RCP2.6 and RCP8.5 and end of century under RCP2.6, these same measures also indicate a detectable though less significant climatic shift. Therefore, while measures reducing global emissions would not prevent climate change at this regional scale in the coming decades, their impact would be dramatic by the end of the twenty-first century. © 2015 American Meteorological Society.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/50891
Appears in Collections: 气候变化事实与影响
There are no files associated with this item.
作者单位: Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA, United States
Recommended Citation:
Sun F.,Walton D.B.,Hall A.. A hybrid dynamical-statistical downscaling technique. Part II: End-of-Century warming projections predict a new climate state in the Los Angeles region[J]. Journal of Climate,2015-01-01,28(12)