Bayes factor
; Bayesian methods
; Bayesian model selection
; Change-point analysis
; Detection problems
; Large scale simulations
; Missing data
; Pair-wise comparison
; Posterior probability
; Statistical techniques
; Surface temperatures
; Temperature data
; Temperature series
; Atmospheric temperature
; Bayesian networks
; Computer simulation
; Climate models
; air temperature
; algorithm
; Bayesian analysis
; numerical model
; probability
; surface temperature
; trend analysis
; United States
CICS-NC, North Carolina State University, Raleigh, NC, United States; Statistical and Applied Mathematical Sciences Institute, Research Triangle Park, NC, United States; Sanofi-Aventis, Boston, MA, United States; NOAA/National Climatic Data Center, Asheville, NC, United States
Recommended Citation:
Zhang J.,Zheng W.,Menne J.M.. A bayes factor model for detecting artificial discontinuities via pairwise comparisons[J]. Journal of Climate,2012-01-01,25(24)