Changes in the Southern Ocean lower-limb overturning circulation are analyzed using a set of climate models. In agreement with some recently developed theoretical models, it is found that the overturning can be strongly affected by winds. In particular, the simulated strengthening of large-scale southward transport in the abyss is explicitly driven by zonal wind stress. However, there is a considerable range among the climate models in their projected changes of Southern Ocean wind stress. Furthermore, the strengthening of largescale southward transport tends to be compensated by eddy-induced northward flows in the abyss, particularly at eddy-permitting resolution. As a result, the net Antarctic Bottom Water (AABW) export may only be weakly affected. However, none of the models considered accounts for the possibility that a fraction of the eddy kinetic energy may be converted to diapycnal mixing. If this were the case, the presented energetic arguments suggest that stronger Southern Ocean winds would result in a stronger AABW transport.
Canadian Centre for Climate Modelling and Analysis, Environment Canada, Victoria, BC, Canada; Climate Change Research Centre, University of New South Wales, Sydney, NSW, Australia
Recommended Citation:
Saenko O.A.,Gupta A.S.,Spence P.. On challenges in predicting bottom water transport in the Southern Ocean[J]. Journal of Climate,2012-01-01,25(4)