globalchange  > 过去全球变化的重建
DOI: 10.1007/s00382-011-1233-8
Scopus记录号: 2-s2.0-84864394230
论文题名:
The vertical distribution of climate forcings and feedbacks from the surface to top of atmosphere
作者: Previdi M.; Liepert B.G.
刊名: Climate Dynamics
ISSN: 9307575
出版年: 2012
卷: 39, 期:3
起始页码: 941
结束页码: 951
语种: 英语
英文关键词: Climate models ; Climate sensitivity ; Hydrological cycle ; Radiative feedbacks ; Surface energy budget
英文摘要: The radiative forcings and feedbacks that determine Earth's climate sensitivity are typically defined at the top-of-atmosphere (TOA) or tropopause, yet climate sensitivity itself refers to a change in temperature at the surface. In this paper, we describe how TOA radiative perturbations translate into surface temperature changes. It is shown using first principles that radiation changes at the TOA can be equated with the change in energy stored by the oceans and land surface. This ocean and land heat uptake in turn involves an adjustment of the surface radiative and non-radiative energy fluxes, with the latter being comprised of the turbulent exchange of latent and sensible heat between the surface and atmosphere. We employ the radiative kernel technique to decompose TOA radiative feedbacks in the IPCC Fourth Assessment Report climate models into components associated with changes in radiative heating of the atmosphere and of the surface. (We consider the equilibrium response of atmosphere-mixed layer ocean models subjected to an instantaneous doubling of atmospheric CO2). It is shown that most feedbacks, i. e., the temperature, water vapor and cloud feedbacks, (as well as CO2 forcing) affect primarily the turbulent energy exchange at the surface rather than the radiative energy exchange. Specifically, the temperature feedback increases the surface turbulent (radiative) energy loss by 2.87 W m-2 K-1 (0.60 W m-2 K-1) in the multimodel mean; the water vapor feedback decreases the surface turbulent energy loss by 1.07 W m-2 K-1 and increases the surface radiative heating by 0.89 W m-2 K-1; and the cloud feedback decreases both the turbulent energy loss and the radiative heating at the surface by 0.43 and 0.24 W m-2 K-1, respectively. Since changes to the surface turbulent energy exchange are dominated in the global mean sense by changes in surface evaporation, these results serve to highlight the fundamental importance of the global water cycle to Earth's climate sensitivity. © 2011 Springer-Verlag.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/55223
Appears in Collections:过去全球变化的重建

Files in This Item:

There are no files associated with this item.


作者单位: Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9 W, Palisades, NY 10964, United States; NorthWest Research Associates, Redmond, WA, United States

Recommended Citation:
Previdi M.,Liepert B.G.. The vertical distribution of climate forcings and feedbacks from the surface to top of atmosphere[J]. Climate Dynamics,2012-01-01,39(3)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Previdi M.]'s Articles
[Liepert B.G.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Previdi M.]'s Articles
[Liepert B.G.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Previdi M.]‘s Articles
[Liepert B.G.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.