DOI: 10.1111/gcb.12324
论文题名: Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China
作者: Liu Z. ; Hubbard K.G. ; Lin X. ; Yang X.
刊名: Global Change Biology
ISSN: 13541013
出版年: 2013
卷: 19, 期: 11 起始页码: 3481
结束页码: 3492
语种: 英语
英文关键词: Climate change
; Crop simulation model APSIM
; Cultivar
; Maize
; Northeast China
; Sowing date
; Yield
Scopus关键词: agricultural production
; climate change
; crop production
; cultivar
; maize
; modeling
; phenology
; production system
; sowing
; yield response
; China
; Zea mays
; agriculture
; article
; China
; climate change
; crop simulation model APSIM
; cultivar
; maize
; methodology
; Northeast China
; physiology
; sowing date
; temperature
; theoretical model
; yield
; climate change
; crop simulation model APSIM
; cultivar
; maize
; Northeast China
; sowing date
; yield
; Agriculture
; China
; Climate Change
; Models, Theoretical
; Temperature
; Zea mays
英文摘要: Northeast China (NEC) accounts for about 30% of the nation's maize production in China. In the past three decades, maize yields in NEC have increased under changes in climate, cultivar selection and crop management. It is important to investigate the contribution of these changing factors to the historical yield increases to improve our understanding of how we can ensure increased yields in the future. In this study, we use phenology observations at six sites from 1981 to 2007 to detect trends in sowing dates and length of maize growing period, and then combine these observations with in situ temperature data to determine the trends of thermal time in the maize growing period, as a measure of changes in maize cultivars. The area in the vicinity of these six sites accounts for 30% of NEC's total maize production. The agricultural production systems simulator, APSIM-Maize model, was used to separate the impacts of changes in climate, sowing dates and thermal time requirements on maize phenology and yields. In NEC, sowing dates trended earlier in four of six sites and maturity dates trended later by 4-21 days. Therefore, the period from sowing to maturity ranged from 2 to 38 days longer in 2007 than it was in 1981. Our results indicate that climate trends alone would have led to a negative impact on maize. However, results from the adaptation assessments indicate that earlier sowing dates increased yields by up to 4%, and adoption of longer season cultivars caused a substantial increase in yield ranging from 13% to 38% over the past 27 years. Therefore, earlier sowing dates and introduction of cultivars with higher thermal time requirements in NEC have overcome the negative effects of climate change and turned what would have otherwise been a loss into a significant increase in maize yield. © 2013 John Wiley & Sons Ltd.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/62307
Appears in Collections: 影响、适应和脆弱性
There are no files associated with this item.
作者单位: College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Rd., Haidian District, Beijing 100193, China; School of Natural Resources, University of Nebraska-Lincoln, 3310 Holdrege Street, Lincoln, NE 68583, United States; Department of Agronomy, Kansas State University, Plant Sciences Center, 2108 Throckmorton Hall, Manhattan, KS 66506, United States; LI-COR Biosciences, 4647 Superior Street, Lincoln, NE 68504, United States
Recommended Citation:
Liu Z.,Hubbard K.G.,Lin X.,et al. Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China[J]. Global Change Biology,2013-01-01,19(11)