DOI: 10.1111/gcb.12173
论文题名: Implications of nonrandom seed abscission and global stilling for migration of wind-dispersed plant species
作者: Thompson S.E. ; Katul G.G.
刊名: Global Change Biology
ISSN: 13541013
出版年: 2013
卷: 19, 期: 6 起始页码: 1720
结束页码: 1735
语种: 英语
英文关键词: Anemochory
; Global stilling
; Lagrangian modeling
; Seed abscission
; Seed dispersal
Scopus关键词: abscission
; climate change
; plant
; population migration
; seed dispersal
; survival
; wind velocity
; article
; biodiversity
; physiology
; plant physiology
; plant seed
; theoretical model
; wind
; Biodiversity
; Models, Theoretical
; Plant Physiological Phenomena
; Seeds
; Wind
英文摘要: Migration of plant populations is a potential survival response to climate change that depends critically on seed dispersal. Biological and physical factors determine dispersal and migration of wind-dispersed species. Recent field and wind tunnel studies demonstrate biological adaptations that bias seed release toward conditions of higher wind velocity, promoting longer dispersal distances and faster migration. However, another suite of international studies also recently highlighted a global decrease in near-surface wind speeds, or 'global stilling'. This study assessed the implications of both factors on potential plant population migration rates, using a mechanistic modeling framework. Nonrandom abscission was investigated using models of three seed release mechanisms: (i) a simple drag model; (ii) a seed deflection model; and (iii) a 'wear and tear' model. The models generated a single functional relationship between the frequency of seed release and statistics of the near-surface wind environment, independent of the abscission mechanism. An Inertial-Particle, Coupled Eulerian-Lagrangian Closure model (IP-CELC) was used to investigate abscission effects on seed dispersal kernels and plant population migration rates under contemporary and potential future wind conditions (based on reported global stilling trends). The results confirm that nonrandom seed abscission increased dispersal distances, particularly for light seeds. The increases were mitigated by two physical feedbacks: (i) although nonrandom abscission increased the initial acceleration of seeds from rest, the sensitivity of the seed dispersal to this initial condition declined as the wind speed increased; and (ii) while nonrandom abscission increased the mean dispersal length, it reduced the kurtosis of seasonal dispersal kernels, and thus the chance of long-distance dispersal. Wind stilling greatly reduced the modeled migration rates under biased seed release conditions. Thus, species that require high wind velocities for seed abscission could experience threshold-like reductions in dispersal and migration potential if near-surface wind speeds continue to decline. © 2013 Blackwell Publishing Ltd.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/62431
Appears in Collections: 影响、适应和脆弱性
There are no files associated with this item.
作者单位: Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94710, United States; Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, NC, 27708-0328, United States
Recommended Citation:
Thompson S.E.,Katul G.G.. Implications of nonrandom seed abscission and global stilling for migration of wind-dispersed plant species[J]. Global Change Biology,2013-01-01,19(6)