DOI: 10.1111/j.1365-2486.2012.02791.x
论文题名: Climate change and ocean acidification effects on seagrasses and marine macroalgae
作者: Koch M. ; Bowes G. ; Ross C. ; Zhang X.-H.
刊名: Global Change Biology
ISSN: 13541013
出版年: 2013
卷: 19, 期: 1 起始页码: 103
结束页码: 132
语种: 英语
英文关键词: Calcification
; Climate change
; Dissolution
; Macroalgae
; Ocean acidification
; Seagrass
; Temperature
; Tropics
Scopus关键词: acid
; carbon
; acidification
; autotrophy
; biochemistry
; carbon dioxide
; carbonate
; coastal lagoon
; dissolution
; dissolved inorganic carbon
; macroalga
; open water
; photosynthesis
; reef
; seagrass
; temperature effect
; chemistry
; climate change
; marine biology
; metabolism
; pH
; photosynthesis
; Poaceae
; review
; sea
; seaweed
; Acids
; Carbon
; Climate Change
; Hydrogen-Ion Concentration
; Marine Biology
; Oceans and Seas
; Photosynthesis
; Poaceae
; Seaweed
英文摘要: Although seagrasses and marine macroalgae (macro-autotrophs) play critical ecological roles in reef, lagoon, coastal and open-water ecosystems, their response to ocean acidification (OA) and climate change is not well understood. In this review, we examine marine macro-autotroph biochemistry and physiology relevant to their response to elevated dissolved inorganic carbon [DIC], carbon dioxide [CO2], and lower carbonate [CO32-] and pH. We also explore the effects of increasing temperature under climate change and the interactions of elevated temperature and [CO2]. Finally, recommendations are made for future research based on this synthesis. A literature review of >100 species revealed that marine macro-autotroph photosynthesis is overwhelmingly C3 (≥ 85%) with most species capable of utilizing HCO3-; however, most are not saturated at current ocean [DIC]. These results, and the presence of CO2-only users, lead us to conclude that photosynthetic and growth rates of marine macro-autotrophs are likely to increase under elevated [CO2] similar to terrestrial C3 species. In the tropics, many species live close to their thermal limits and will have to up-regulate stress-response systems to tolerate sublethal temperature exposures with climate change, whereas elevated [CO2] effects on thermal acclimation are unknown. Fundamental linkages between elevated [CO2] and temperature on photorespiration, enzyme systems, carbohydrate production, and calcification dictate the need to consider these two parameters simultaneously. Relevant to calcifiers, elevated [CO2] lowers net calcification and this effect is amplified by high temperature. Although the mechanisms are not clear, OA likely disrupts diffusion and transport systems of H+ and DIC. These fluxes control micro-environments that promote calcification over dissolution and may be more important than CaCO3 mineralogy in predicting macroalgal responses to OA. Calcareous macroalgae are highly vulnerable to OA, and it is likely that fleshy macroalgae will dominate in a higher CO2 ocean; therefore, it is critical to elucidate the research gaps identified in this review. © 2012 Blackwell Publishing Ltd.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/62564
Appears in Collections: 影响、适应和脆弱性
There are no files associated with this item.
作者单位: Aquatic Plant Ecology Laboratory, Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, United States; Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL 32611, United States; Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, United States; Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, United States
Recommended Citation:
Koch M.,Bowes G.,Ross C.,et al. Climate change and ocean acidification effects on seagrasses and marine macroalgae[J]. Global Change Biology,2013-01-01,19(1)