globalchange  > 影响、适应和脆弱性
DOI: 10.1016/j.foreco.2015.03.013
Scopus记录号: 2-s2.0-84925691450
论文题名:
Predicting wood fiber attributes using local-scale metrics from terrestrial LiDAR data: A case study of Newfoundland conifer species
作者: Blanchette D.; Fournier R.A.; Luther J.E.; Côté J.-F.
刊名: Forest Ecology and Management
ISSN:  0378-1127
出版年: 2015
卷: 347
起始页码: 116
结束页码: 129
语种: 英语
英文关键词: AIC ; Forestry ; Modeling ; Multimodel inference ; Terrestrial LiDAR ; Wood fiber attributes
Scopus关键词: Fibers ; Forestry ; Models ; Optical radar ; Surveying instruments ; Wood products ; AIC ; Balsam fir (Abies balsamea) ; Black spruce (Picea mariana) ; Explanatory variables ; Multi-model inference ; Terrestrial laser scanners ; Terrestrial lidars ; Wood fiber ; Wood ; canopy architecture ; coniferous tree ; deciduous tree ; forest canopy ; forest resource ; laser method ; lidar ; optimization ; prediction ; wood ; wood quality ; Forestry ; Picea Mariana ; Trees ; Wood Fibers ; Canada ; Newfoundland ; Newfoundland and Labrador ; Abies balsamea ; Coniferophyta ; Picea mariana
英文摘要: Knowledge of wood fiber attributes (WFA) is important for evaluating forest resources and optimizing efficiency in the forest industry. To improve our ability to estimate WFA in the forest, we analyzed the relationships between structural metrics derived from terrestrial laser scanner (TLS) data and four key attributes of industrial significance: wood density, fiber length, microfibril angle, and coarseness. We developed a suite of structural metrics that relate to four aspects of the forest: canopy structure, competition, vegetation density, and local topography. We modeled WFA for sites dominated by black spruce (Picea mariana) and balsam fir (Abies balsamea) trees. For black spruce sites, R2 values ranged from 63% to 72%. Structural metrics that relate to competition were the strongest explanatory variables. For balsam fir sites, R2 ranged from 37% to 63% using structural metrics that relate mostly to canopy structure. Our results demonstrate that local structural variables are useful explanatory variables for predicting WFA of the dominant coniferous species in Newfoundland. © 2015.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/65446
Appears in Collections:影响、适应和脆弱性

Files in This Item:

There are no files associated with this item.


作者单位: Centre d'Applications et de Recherches en Télédétection (CARTEL), Université de Sherbrooke, Sherbrooke, QC, Canada; Natural Resources Canada, Canadian Forest Service - Atlantic Forestry Centre, 26 University Drive, Corner Brook, NL, Canada; Natural Resources Canada, Canadian Forest Service - Canadian Wood Fibre Centre, 1055 du P.E.P.S., Sainte-Foy, QC, Canada

Recommended Citation:
Blanchette D.,Fournier R.A.,Luther J.E.,et al. Predicting wood fiber attributes using local-scale metrics from terrestrial LiDAR data: A case study of Newfoundland conifer species[J]. Forest Ecology and Management,2015-01-01,347
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Blanchette D.]'s Articles
[Fournier R.A.]'s Articles
[Luther J.E.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Blanchette D.]'s Articles
[Fournier R.A.]'s Articles
[Luther J.E.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Blanchette D.]‘s Articles
[Fournier R.A.]‘s Articles
[Luther J.E.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.