DOI: 10.1016/j.foreco.2014.05.056
Scopus记录号: 2-s2.0-84904045104
论文题名: Harvest residue removal and soil compaction impact forest productivity and recovery: Potential implications for bioenergy harvests
作者: Curzon M.T. ; D'Amato A.W. ; Palik B.J.
刊名: Forest Ecology and Management
ISSN: 0378-1127
出版年: 2014
卷: 329 起始页码: 99
结束页码: 107
语种: 英语
英文关键词: Aspen
; Bioenergy
; Disturbance
; Populus tremuloides
; Structural development
Scopus关键词: Ecosystems
; Harvesting
; Productivity
; Soil mechanics
; Aspen
; Bio-energy
; Disturbance
; Populus tremuloides
; Structural development
; Forestry
; aboveground biomass
; bioenergy
; biological production
; community response
; compaction
; deciduous forest
; ecosystem response
; environmental disturbance
; forest ecosystem
; forest management
; forest soil
; harvesting
; land use change
; management practice
; organic matter
; plant residue
; regeneration
; soil texture
; stand structure
; Ecosystems
; Forestry
; Harvesting
; Populus
; Populus Tremuloides
; Productivity
; Chippewa National Forest
; Michigan
; Minnesota
; Ottawa National Forest
; United States
英文摘要: Understanding the effects of management on forest structure and function is increasingly important in light of projected increases in both natural and anthropogenic disturbance severity and frequency with global environmental change. We examined potential impacts of the procurement of forest-derived bioenergy, a change in land use that has been suggested as a climate change mitigation strategy, on the productivity and structural development of aspen-dominated ecosystems. Specifically, we tested the effects of two factors: organic matter removal (stem-only harvest, whole-tree harvest, whole-tree harvest plus forest floor removal) and soil compaction (light, moderate, and heavy) over time. This range of treatments, applied across three sites dominated by aspen (Populus tremuloides Michx.) but with different soil textures, allowed us to characterize how disturbance severity influences ecosystem recovery. Disturbance severity significantly affected above-ground biomass production and forest structural development with responses varying among sites. At the Huron National Forest (sandy soils), the removal of harvest residues reduced above-ground biomass production, but no negative effect was observed following whole-tree harvest at the Ottawa and Chippewa National Forests (clayey and loamy soils, respectively) relative to stem-only harvest. Maximum diameter and the density of stems greater than 5. cm DBH exhibited negative responses to increased disturbance severity at two sites, indicating that structural development may be slowed. Overall, results suggest that disturbance severity related to procuring harvest residues for bioenergy production may impact future productivity and development, depending on site conditions and quality. © 2014 Elsevier B.V.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/65828
Appears in Collections: 影响、适应和脆弱性
There are no files associated with this item.
作者单位: Department of Forest Resources, University of Minnesota, 1530 Cleveland Avenue North, Saint Paul, MN 55108, United States; USDA Forest Service, Northern Research Station, 1831 Hwy 169 E., Grand Rapids, MN 55744, United States
Recommended Citation:
Curzon M.T.,D'Amato A.W.,Palik B.J.. Harvest residue removal and soil compaction impact forest productivity and recovery: Potential implications for bioenergy harvests[J]. Forest Ecology and Management,2014-01-01,329