DOI: 10.5194/tc-8-2255-2014
Scopus记录号: 2-s2.0-84908069589
论文题名: Study of a temperature gradient metamorphism of snow from 3-D images: Time evolution of microstructures, physical properties and their associated anisotropy
作者: Calonne N ; , Flin F ; , Geindreau C ; , Lesaffre B ; , Rolland Du Roscoat S
刊名: Cryosphere
ISSN: 19940416
出版年: 2014
卷: 8, 期: 6 起始页码: 2255
结束页码: 2274
语种: 英语
英文关键词: anisotropy
; computer simulation
; Gaussian method
; isotropy
; metamorphism
; microstructure
; numerical model
; physical property
; snow
; temperature gradient
; three-dimensional modeling
英文摘要: We carried out a study to monitor the time evolution of microstructural and physical properties of snow during temperature gradient metamorphism: a snow slab was subjected to a constant temperature gradient in the vertical direction for 3 weeks in a cold room, and regularly sampled in order to obtain a series of three-dimensional (3-D) images using X-ray microtomography. A large set of properties was then computed from this series of 3-D images: density, specific surface area, correlation lengths, mean and Gaussian curvature distributions, air and ice tortuosities, effective thermal conductivity, and intrinsic permeability. Whenever possible, specific attention was paid to assess these properties along the vertical and horizontal directions, and an anisotropy coefficient defined as the ratio of the vertical over the horizontal values was deduced. The time evolution of these properties, as well as their anisotropy coefficients, was investigated, showing the development of a strong anisotropic behavior during the experiment. Most of the computed physical properties of snow were then compared with two analytical estimates (self-consistent estimates and dilute beds of spheroids) based on the snow density, and the size and anisotropy of the microstructure through the correlation lengths. These models, which require only basic microstructural information, offer rather good estimates of the properties and anisotropy coefficients for our experiment without any fitting parameters. Our results highlight the interplay between the microstructure and physical properties, showing that the physical properties of snow subjected to a temperature isotropic parameters such as the density and require more refined information. Furthermore, this study constitutes a detailed database on the evolution of snow properties under a temperature gradient, which can be used as a guideline and a validation tool for snow metamorphism models at the microor macroscale. © Author(s) 2014.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/74755
Appears in Collections: 影响、适应和脆弱性 气候变化与战略
There are no files associated with this item.
作者单位: Météo-France - CNRS, CNRM - GAME UMR3589, CEN, Saint Martin d'Hères, France; Univ. Grenoble Alpes, 3SR, Grenoble, France; CNRS, 3SR, Grenoble, France
Recommended Citation:
Calonne N,, Flin F,, Geindreau C,et al. Study of a temperature gradient metamorphism of snow from 3-D images: Time evolution of microstructures, physical properties and their associated anisotropy[J]. Cryosphere,2014-01-01,8(6)