DOI: 10.5194/tc-10-799-2016
Scopus记录号: 2-s2.0-84966341142
论文题名: Growth of a young pingo in the Canadian Arctic observed by RADARSAT-2 interferometric satellite radar
作者: Samsonov S ; V ; , Lantz T ; C ; , Kokelj S ; V ; , Zhang Y
刊名: Cryosphere
ISSN: 19940416
出版年: 2016
卷: 10, 期: 2 起始页码: 799
结束页码: 810
语种: 英语
英文关键词: aerial photograph
; coastal zone
; estimation method
; pingo
; polar region
; prediction
; radar interferometry
; RADARSAT
; satellite sensor
; seasonal variation
; soil temperature
; spatial resolution
; uplift
英文摘要: Advancements in radar technology are increasing our ability to detect Earth surface deformation in permafrost environments. In this paper we use satellite Differential Interferometric Synthetic Aperture Radar (DInSAR) to describe the growth of a large, relatively young pingo in the Tuktoyaktuk Coastlands. High-resolution RADARSAT-2 imagery (2011-2014) analyzed with the Multidimensional Small Baseline Subset (MSBAS) DInSAR revealed a maximum 2.7 cm yr-1 of domed uplift located in a drained lake basin. Satellite measurements suggest that this feature is one of the largest diameter pingos in the region that is presently growing. Observed changes in elevation were modeled as a 348 times; 290 m uniformly loaded elliptical plate with clamped edge. Analysis of historical aerial photographs suggested that ground uplift at this location initiated sometime between 1935 and 1951 following drainage of the residual pond. Uplift is largely due to the growth of intrusive ice, because the 9 % expansion of pore water associated with permafrost aggradation into saturated sands is not sufficient to explain the observed short- and long-term deformation rates. The modeled thickness of ice-rich permafrost using the Northern Ecosystem Soil Temperature (NEST) was consistent with the maximum height of this feature. Modeled permafrost aggradation from 1972 to 2014 approximated elevation changes estimated from aerial photographs for that time period. Taken together, these lines of evidence indicate that uplift is at least in part a result of freezing of the sub-pingo water lens. Seasonal variations in the uplift rate seen in the DInSAR data closely match the modeled seasonal pattern in the deepening rate of freezing front. This study demonstrates that interferometric satellite radar can detect and contribute to understanding the dynamics of terrain uplift in response to permafrost aggradation and ground ice development in remote polar environments. The present-day growth rate is smaller than predicted by the modeling and no clear growth is observed at other smaller pingos in contrast with field studies performed mainly before the 1990s. Investigation of this apparent discrepancy provides an opportunity to further develop observation methods and models. © Author(s) 2016.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/75155
Appears in Collections: 影响、适应和脆弱性 气候变化与战略
There are no files associated with this item.
作者单位: Canada Centre for Mapping and Earth Observation, Natural Resources Canada, 560 Rochester Street, Ottawa, ON, Canada; School of Environmental Studies, University of Victoria, Victoria, BC, Canada; Northwest Territories Geological Survey, Government of the Northwest Territories, Yellowknife, NWT, Canada
Recommended Citation:
Samsonov S,V,, Lantz T,et al. Growth of a young pingo in the Canadian Arctic observed by RADARSAT-2 interferometric satellite radar[J]. Cryosphere,2016-01-01,10(2)