DOI: | 10.5194/tc-11-1173-2017
|
Scopus记录号: | 2-s2.0-85019199756
|
论文题名: | A multiphysical ensemble system of numerical snow modelling |
作者: | Lafaysse M; , Cluzet B; , Dumont M; , Lejeune Y; , Vionnet V; , Morin S
|
刊名: | Cryosphere
|
ISSN: | 19940416
|
出版年: | 2017
|
卷: | 11, 期:3 | 起始页码: | 1173
|
结束页码: | 1198
|
语种: | 英语
|
英文关键词: | albedo
; bulk density
; data set
; ensemble forecasting
; error analysis
; numerical model
; performance assessment
; probability
; snowpack
; surface temperature
; Crocus
|
英文摘要: | Physically based multilayer snowpack models suffer from various modelling errors. To represent these errors, we built the new multiphysical ensemble system ESCROC (Ensemble System Crocus) by implementing new representations of different physical processes in the deterministic coupled multilayer ground/snowpack model SURFEX/ISBA/Crocus. This ensemble was driven and evaluated at Col de Porte (1325 m a.s.l., French alps) over 18 years with a high-quality meteorological and snow data set. A total number of 7776 simulations were evaluated separately, accounting for the uncertainties of evaluation data. The ability of the ensemble to capture the uncertainty associated to modelling errors is assessed for snow depth, snow water equivalent, bulk density, albedo and surface temperature. Different sub-ensembles of the ESCROC system were studied with probabilistic tools to compare their performance. Results show that optimal members of the ESCROC system are able to explain more than half of the total simulation errors. Integrating members with biases exceeding the range corresponding to observational uncertainty is necessary to obtain an optimal dispersion, but this issue can also be a consequence of the fact that meteorological forcing uncertainties were not accounted for. The ESCROC system promises the integration of numerical snow-modelling errors in ensemble forecasting and ensemble assimilation systems in support of avalanche hazard forecasting and other snowpack-modelling applications. © 2017 Author(s). |
Citation statistics: |
|
资源类型: | 期刊论文
|
标识符: | http://119.78.100.158/handle/2HF3EXSE/75555
|
Appears in Collections: | 影响、适应和脆弱性 气候变化与战略
|
There are no files associated with this item.
|
作者单位: | Météo-France, CNRS, CNRM UMR3589, Centre d'Études de la Neige (CEN), Grenoble, France
|
Recommended Citation: |
Lafaysse M,, Cluzet B,, Dumont M,et al. A multiphysical ensemble system of numerical snow modelling[J]. Cryosphere,2017-01-01,11(3)
|
|
|