DOI: 10.1002/gbc.20093
Scopus记录号: 2-s2.0-84885058432
论文题名: Hysteresis conditions the vertical position of deep chlorophyll maximum in the temperate ocean
作者: Navarro G ; , Ruiz J
刊名: Global Biogeochemical Cycles
ISSN: 8866236
出版年: 2013
卷: 27, 期: 4 起始页码: 1013
结束页码: 1022
语种: 英语
英文关键词: deep chlorophyll maximum
; global change
; hysteresis
; physical and biological coupling
Scopus关键词: Biological couplings
; Biological structures
; Deep chlorophyll maximums
; Global change
; Instantaneous response
; Isopycnal surfaces
; Physicochemical environments
; Winter mixed layers
; Chlorophyll
; Hysteresis
; Oceanography
; biogeochemistry
; chlorophyll
; global change
; hysteresis
; isopycnal layer
; mixed layer
; phytoplankton
; primary production
; remote sensing
; satellite imagery
; seawater
; temperate environment
; water column
英文摘要: Deep chlorophyll maxima (DCMs) are widespread features of oceans. In temperate regions, DCMs are commonly associated with isopycnal surfaces that frequently move over a wide vertical range. This general association between DCMs and isopycnals remains unexplained by present theories, and we show here that it emerges from the seasonal history of the water column. Analysis of the formation of more than 9000 seasonal DCMs throughout the world's oceans consistently locates the vertical position of spring/summer DCMs in temperate seas at the density of the previous winter mixed layer, independently of this density value and future depth. These results indicate that DCM formation cannot be understood without hysteresis by solely considering the instantaneous response of phytoplankton to vertical gradients in physical and chemical fields. Present theories for DCM formation cannot explain why spring and summer DCMs are systematically found at a density equal to that of the previous mixed layer where a bloom has occurred. Rather than reacting to instantaneous physical forcing, the results indicate that DCMs operate as self-preserving biological structures that are associated with particular isopycnals because of their capacity to modify the physicochemical environment. Combined with remote sensors to measure salinity and temperature in the surface ocean, this new understanding of DCM dynamics has the potential to improve the quantification of three-dimensional primary production via satellites. This significant enhancement of the representation of oceanic biological processes can also allow increasingly realistic predictions of future biogeochemical scenarios in a warming ocean. Key Points Deep chlorophyll maxima operate as shelf-preserving structures The vertical position of DCM cannot be fully explained without hysteresis Deep chlorophyll maxima hysteresis is ubiquitous in the temperate ocean ©2013. American Geophysical Union. All Rights Reserved.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/77551
Appears in Collections: 气候变化事实与影响
There are no files associated with this item.
作者单位: Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía, ICMAN-CSIC, Cadiz, Spain
Recommended Citation:
Navarro G,, Ruiz J. Hysteresis conditions the vertical position of deep chlorophyll maximum in the temperate ocean[J]. Global Biogeochemical Cycles,2013-01-01,27(4)