DOI: 10.5194/hess-19-1961-2015
Scopus记录号: 2-s2.0-84928799291
论文题名: Estimation of temporal and spatial variations in groundwater recharge in unconfined sand aquifers using Scots pine inventories
作者: Ala-Aho P ; , Rossi P ; M ; , Kløve B
刊名: Hydrology and Earth System Sciences
ISSN: 10275606
出版年: 2015
卷: 19, 期: 4 起始页码: 1961
结束页码: 1976
语种: 英语
Scopus关键词: Aquifers
; Climate change
; Evaporation
; Evapotranspiration
; Forestry
; Groundwater
; Groundwater resources
; Hydrogeology
; Intelligent systems
; Land use
; Monte Carlo methods
; Parameter estimation
; Timber
; Transpiration
; Uncertainty analysis
; Different mechanisms
; Ground water recharge
; Interannual variation
; Sediment hydraulic properties
; Simulation parameters
; Temporal and spatial variation
; Temporal distribution
; Water table fluctuations
; Recharging (underground waters)
; annual variation
; aquifer
; baseflow
; climate change
; climate conditions
; coniferous tree
; estimation method
; evapotranspiration
; forest inventory
; forest management
; groundwater
; leaf area index
; numerical model
; recharge
; spatiotemporal analysis
; vegetation cover
; water table
; Evaporation
; Forestry
; Ground Water
; Land Use
; Seasonal Variation
; Sediments
; Transpiration
; Pinus sylvestris
英文摘要: Climate change and land use are rapidly changing the amount and temporal distribution of recharge in northern aquifers. This paper presents a novel method for distributing Monte Carlo simulations of 1-D sandy sediment profile spatially to estimate transient recharge in an unconfined esker aquifer. The modelling approach uses data-based estimates for the most important parameters controlling the total amount (canopy cover) and timing (thickness of the unsaturated zone) of groundwater recharge. Scots pine canopy was parameterized to leaf area index (LAI) using forestry inventory data. Uncertainty in the parameters controlling sediment hydraulic properties and evapotranspiration (ET) was carried over from the Monte Carlo runs to the final recharge estimates. Different mechanisms for lake, soil, and snow evaporation and transpiration were used in the model set-up. Finally, the model output was validated with independent recharge estimates using the water table fluctuation (WTF) method and baseflow estimation. The results indicated that LAI is important in controlling total recharge amount. Soil evaporation (SE) compensated for transpiration for areas with low LAI values, which may be significant in optimal management of forestry and recharge. Different forest management scenarios tested with the model showed differences in annual recharge of up to 100 mm. The uncertainty in recharge estimates arising from the simulation parameters was lower than the interannual variation caused by climate conditions. It proved important to take unsaturated thickness and vegetation cover into account when estimating spatially and temporally distributed recharge in sandy unconfined aquifers. © Author(s) 2015. CC Attribution 3.0 License.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/78540
Appears in Collections: 气候变化事实与影响
There are no files associated with this item.
作者单位: Water Resources and Environmental Engineering Research Group, Faculty of Technology, University of Oulu, P.O. Box 4300, Oulu, Finland
Recommended Citation:
Ala-Aho P,, Rossi P,M,et al. Estimation of temporal and spatial variations in groundwater recharge in unconfined sand aquifers using Scots pine inventories[J]. Hydrology and Earth System Sciences,2015-01-01,19(4)