globalchange  > 气候变化事实与影响
DOI: 10.5194/hess-19-293-2015
Scopus记录号: 2-s2.0-84921289598
论文题名:
Linked hydrologic and social systems that support resilience of traditional irrigation communities
作者: Fernald A; , Guldan S; , Boykin K; , Cibils A; , Gonzales M; , Hurd B; , Lopez S; , Ochoa C; , Ortiz M; , Rivera J; , Rodriguez S; , Steele C
刊名: Hydrology and Earth System Sciences
ISSN: 10275606
出版年: 2015
卷: 19, 期:1
起始页码: 293
结束页码: 307
语种: 英语
Scopus关键词: Agriculture ; Biodiversity ; Drought ; Economics ; Groundwater ; Irrigation ; Land use ; Modeling languages ; Population statistics ; Recharging (underground waters) ; Seepage ; Water management ; Water supply ; Causal loop diagrams ; Irrigation management ; Livestock operations ; Management practices ; Multiple disciplines ; Off-farm employment ; Socio-economic systems ; Traditional irrigation ; Climate change ; biodiversity ; climate change ; decision making ; disturbance ; irrigation system ; seepage ; social structure ; socioeconomic indicator ; sustainability ; traditional knowledge ; water management ; water supply ; New Mexico ; United States ; Bos ; Ovis aries
英文摘要: Southwestern US irrigated landscapes are facing upheaval due to water scarcity and land use conversion associated with climate change, population growth, and changing economics. In the traditionally irrigated valleys of northern New Mexico, these stresses, as well as instances of community longevity in the face of these stresses, are apparent. Human systems have interacted with hydrologic processes over the last 400 years in river-fed irrigated valleys to create linked systems. In this study, we ask if concurrent data from multiple disciplines could show that human-adapted hydrologic and socioeconomic systems have created conditions for resilience. Various types of resiliencies are evident in the communities. Traditional local knowledge about the hydrosocial cycle of community water management and ability to adopt new water management practices is a key response to disturbances such as low water supply from drought. Livestock producers have retained their irrigated land by adapting: changing from sheep to cattle and securing income from outside their livestock operations. Labor-intensive crops decreased as off-farm employment opportunities became available. Hydrologic resilience of the system can be affected by both human and natural elements. We find, for example, that there are multiple hydrologic benefits of traditional irrigation system water seepage: it recharges the groundwater that recharges rivers, supports threatened biodiversity by maintaining riparian vegetation, and ameliorates impacts of climate change by prolonging streamflow hydrographs. Human decisions to transfer water out of agriculture or change irrigation management, as well as natural changes such as long-term drought or climate change, can result in reduced seepage and the benefits it provides. We have worked with the communities to translate the multidisciplinary dimensions of these systems into a common language of causal loop diagrams, which form the basis for modeling future scenarios to identify thresholds and tipping points of sustainability. Early indications are that these systems, though not immune to upheaval, have astonishing resilience.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/78636
Appears in Collections:气候变化事实与影响

Files in This Item:

There are no files associated with this item.


作者单位: College of Agricultural, Consumer and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States; Sustainable Agriculture Science Center at Alcalde, New Mexico State University, Alcalde, NM, United States; Community and Regional Planning Program, University of New Mexico, Albuquerque, NM, United States; Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States; New Mexico Acequia Association, Santa Fe, NM, United States; Center for Regional Studies, University of New Mexico, Albuquerque, NM, United States; Department of Anthropology, University of New Mexico, Albuquerque, NM, United States

Recommended Citation:
Fernald A,, Guldan S,, Boykin K,et al. Linked hydrologic and social systems that support resilience of traditional irrigation communities[J]. Hydrology and Earth System Sciences,2015-01-01,19(1)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Fernald A]'s Articles
[, Guldan S]'s Articles
[, Boykin K]'s Articles
百度学术
Similar articles in Baidu Scholar
[Fernald A]'s Articles
[, Guldan S]'s Articles
[, Boykin K]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Fernald A]‘s Articles
[, Guldan S]‘s Articles
[, Boykin K]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.