Atmospheric movements
; Budget control
; Forestry
; Moisture
; Plants (botany)
; Soil moisture
; Soils
; Solar radiation
; Transpiration
; Wind
; Absorbed solar radiations
; Absorption of solar radiation
; European beech (fagus sylvatica l.)
; Forest transpirations
; Heterogeneous conditions
; Independent measurement
; Surface energy budget
; Vapor pressure deficit
; Soil surveys
; absorption
; complex terrain
; deciduous tree
; diurnal variation
; ecohydrology
; energy budget
; forest inventory
; hillslope
; net ecosystem exchange
; sap flow
; soil moisture
; solar radiation
; stand dynamics
; stand structure
; surface energy
; thermodynamics
; transpiration
; vapor pressure
; water uptake
; wind velocity
; Luxembourg [Benelux]
; Luxembourg [Luxembourg (NTN)]
; Fagus sylvatica
英文摘要:
We combine ecohydrological observations of sap flow and soil moisture with thermodynamically constrained estimates of atmospheric evaporative demand to infer the dominant controls of forest transpiration in complex terrain. We hypothesize that daily variations in transpiration are dominated by variations in atmospheric demand, while site-specific controls, including limiting soil moisture, act on longer timescales.
Max-Planck-Institut für Biogeochemie, Jena, Germany; GFZ German Research Centre for Geosciences, Section Hydrology, Potsdam, Germany; Universität Freiburg, Hydrologie, Freiburg, Germany; Universität Jena, Ecological Modelling Group, Jena, Germany; ETH Zürich, Department of Environmental Systems Science, Zurich, Switzerland; Karlsruhe Institute of Technology, Institute of Water and River Basin Management, Karlsruhe, Germany; Technische Universität München, Department of Ecology and Ecosystemmanagement, Munich, Germany
Recommended Citation:
Renner M,, Hassler S,K,et al. Dominant controls of transpiration along a hillslope transect inferred from ecohydrological measurements and thermodynamic limits[J]. Hydrology and Earth System Sciences,2016-01-01,20(5)