Analog to digital conversion
; Arid regions
; Calibration
; Decision trees
; Melting
; Photography
; Snow melting systems
; Calibration and validations
; Distributed calculation
; Flexible sigmoid functions
; Hydrological years
; Spatial heterogeneity
; Sub-grid variability
; Subgrid parameterization
; Terrestrial photography
; Snow
; calibration
; climate variation
; heterogeneity
; Mediterranean environment
; model validation
; parameterization
; photography
; semiarid region
; snow accumulation
; snow cover
; terrestrial environment
; watershed
英文摘要:
Subgrid variability introduces non-negligible scale effects on the grid-based representation of snow. This heterogeneity is even more evident in semiarid regions, where the high variability of the climate produces various accumulation melting cycles throughout the year and a large spatial heterogeneity of the snow cover. This variability in a watershed can often be represented by snow accumulation-depletion curves (ADCs). In this study, terrestrial photography (TP) of a cell-sized area (30ĝ€ × ĝ€30ĝ€m) was used to define local snow ADCs at a Mediterranean site. Snow-cover fraction (SCF) and snow-depth (h) values obtained with this technique constituted the two datasets used to define ADCs. A flexible sigmoid function was selected to parameterize snow behaviour on this subgrid scale. It was then fitted to meet five different snow patterns in the control area: one for the accumulation phase and four for the melting phase in a cycle within the snow season. Each pattern was successfully associated with the snow conditions and previous evolution. The resulting ADCs were associated to certain physical features of the snow, which were used to incorporate them in the point snow model formulated by Herrero et al. (2009) by means of a decision tree. The final performance of this model was tested against field observations recorded over four hydrological years (2009-2013). The calibration and validation of this ADC snow model was found to have a high level of accuracy, with global RMSE values of 105.8ĝ€mm for the average snow depth and 0.21ĝ€m2ĝ€mĝ'2 for the snow-cover fraction in the control area. The use of ADCs on the cell scale proposed in this research provided a sound basis for the extension of point snow models to larger areas by means of a gridded distributed calculation.
Fluvial Dynamics and Hydrology Research Group, Andalusian Institute for Earth System Research, University of Córdoba, Campus Rabanales, Córdoba, Spain; Hydrology Research, Swedish Meteorological and Hydrological Institute, Folkborgsvägen, 17, Norrköping, Sweden; Fluvial Dynamics and Hydrology Research Group, Andalusian Institute for Earth System Research, University of Granada, Granada, Spain
Recommended Citation:
Pimentel R,, Herrero J,, Polo M,et al. Subgrid parameterization of snow distribution at a Mediterranean site using terrestrial photography[J]. Hydrology and Earth System Sciences,2017-01-01,21(2)