globalchange  > 气候减缓与适应
DOI: 10.1007/s10533-015-0141-0
Scopus记录号: 2-s2.0-84948114303
论文题名:
Labile substrate availability controls temperature sensitivity of organic carbon decomposition at different soil depths
作者: Pang X.; Zhu B.; Lü X.; Cheng W.
刊名: Biogeochemistry
ISSN: 0168-2563
EISSN: 1573-515X
出版年: 2015
卷: 126, 期:2018-01-02
起始页码: 85
结束页码: 98
语种: 英语
英文关键词: Glucose ; Michaelis–Menten ; Q10 ; Soil respiration ; Subsoil
英文摘要: The decomposition of soil organic carbon (SOC) is intrinsically sensitive to temperature. However, the degree to which the temperature sensitivity of SOC decomposition (as often measured in Q10 value) varies with soil depth and labile substrate availability remain unclear. This study explores (1) how the Q10 of SOC decomposition changes with increasing soil depth, and (2) how increasing labile substrate availability affects the Q10 at different soil depths. We measured soil CO2 production at four temperatures (6, 14, 22 and 30 °C) using an infrared CO2 analyzer. Treatments included four soil depths (0–20, 20–40, 40–60 and 60–80 cm), four sites (farm, redwood forest, ungrazed and grazed grassland), and two levels of labile substrate availability (ambient and saturated by adding glucose solution). We found that Q10 values at ambient substrate availability decreased with increasing soil depth, from 2.0–2.4 in 0–20 cm to 1.5–1.8 in 60–80 cm. Moreover, saturated labile substrate availability led to higher Q10 in most soil layers, and the increase in Q10 due to labile substrate addition was larger in subsurface soils (20–80 cm) than in surface soils (0–20 cm). Further analysis showed that microbial biomass carbon (MBC) and SOC best explained the variation in Q10 at ambient substrate availability across ecosystems and depths (R2 = 0.37, P < 0.001), and MBC best explained the variation in the change of Q10 between control and glucose addition treatment (R2 = 0.14, P = 0.003). Overall, these results indicate that labile substrate limitation of the temperature sensitivity of SOC decomposition, as previously shown in surface soils, is even stronger for subsoils. Understanding processes controlling the labile substrate availability (e.g., with rising atmospheric CO2 concentration and land use change) should advance our prediction of the fate of subsoil SOC in a warmer world. © 2015, Springer International Publishing Switzerland.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/83459
Appears in Collections:气候减缓与适应
气候变化事实与影响

Files in This Item:

There are no files associated with this item.


作者单位: Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization of Chinese Academy of Sciences, and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, China; Department of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China; State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; Department of Environmental Studies, University of California, Santa Cruz, CA, United States

Recommended Citation:
Pang X.,Zhu B.,Lü X.,et al. Labile substrate availability controls temperature sensitivity of organic carbon decomposition at different soil depths[J]. Biogeochemistry,2015-01-01,126(2018-01-02)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Pang X.]'s Articles
[Zhu B.]'s Articles
[Lü X.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Pang X.]'s Articles
[Zhu B.]'s Articles
[Lü X.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Pang X.]‘s Articles
[Zhu B.]‘s Articles
[Lü X.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.