DOI: 10.1007/s10533-015-0100-9
Scopus记录号: 2-s2.0-84930271356
论文题名: Long-term snowpack manipulation promotes large loss of bioavailable nitrogen and phosphorus in a subalpine grassland
作者: Yano Y. ; Brookshire E.N.J. ; Holsinger J. ; Weaver T.
刊名: Biogeochemistry
ISSN: 0168-2563
EISSN: 1573-515X
出版年: 2015
卷: 124, 期: 2018-01-03 起始页码: 319
结束页码: 333
语种: 英语
英文关键词: Climate change
; Grassland
; Nitrogen cycle
; Nutrient leaching
; Nutrient stoichiometry
; Phosphorus cycle
; Snowmelt
Scopus关键词: bioavailability
; climate change
; grassland
; growing season
; leaching
; nitrogen
; nutrient availability
; nutrient uptake
; phosphorus
; primary production
; snowmelt
; snowpack
; stoichiometry
; subalpine environment
; Rocky Mountains
英文摘要: Nutrient retention in ecosystems requires synchrony between the supply of bioavailable nutrients released via mineralization and nutrient uptake by plants. Though disturbance and chronic nutrient loading are known to alter nitrogen (N) and phosphorus (P) dynamics and induce nutrient export, whether long-term shifts in climate affect source-sink synchrony, and ultimately primary productivity, remains uncertain. This is particularly true for snow-dominated ecosystems, which are naturally subject to lags between nutrient inputs and uptake. To address how climate change may affect nutrient source-sink synchrony we examined the impacts of deepened snowpack on N and P losses in a subalpine grassland in the Northern Rocky Mountains, USA, where we have experimentally increased snowpack depths by two- and four-times ambient snow for 45 years. Long-term snow addition resulted in remarkably high levels of bioavailable-N leaching (up to 16 kg ha−1 year−1) that were 11–80 times higher than those under ambient snowpack. Estimated bioavailable-P losses also increased with snow addition, but to a lesser degree (up to 0.3 kg ha−1 year−1), indicating greater enhancement of N losses over P losses during snowmelt. Because these losses could not be explained by changes in nutrient inputs in snowpack or by changes in plant-soil turnover, our results suggest that high bioavailable-N leaching under deep snowpack originates not from a lack of N limitation of plant productivity, but rather from enhanced subnivean microbial processes followed by snowmelt leaching prior to the growing season. This is supported by reduced soil N pools in the snow treatments. Snow-dominated regions are projected to experience shifts in seasonal snowpack regime. These shifts may ultimately affect the stoichiometric balance between available N and P and future plant productivity. © 2015, Springer International Publishing Switzerland.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/83515
Appears in Collections: 气候减缓与适应 气候变化事实与影响
There are no files associated with this item.
作者单位: Department of Land, Resources & Environmental Sciences, Montana State University, Bozeman, MT, United States; Department of Ecology, Montana State University, Bozeman, MT, United States
Recommended Citation:
Yano Y.,Brookshire E.N.J.,Holsinger J.,et al. Long-term snowpack manipulation promotes large loss of bioavailable nitrogen and phosphorus in a subalpine grassland[J]. Biogeochemistry,2015-01-01,124(2018-01-03)