项目编号: | 1706007
|
项目名称: | Collaborative Research: The Roles of Inter-limb Jets and Body Angles in Metachronal Paddling |
作者: | Donald Webster
|
承担单位: | Georgia Tech Research Corporation
|
批准年: | 2017
|
开始日期: | 2017-09-01
|
结束日期: | 2020-08-31
|
资助金额: | 81891
|
资助来源: | US-NSF
|
项目类别: | Continuing grant
|
国家: | US
|
语种: | 英语
|
特色学科分类: | Engineering - Chemical, Bioengineering, Environmental, and Transport Systems
|
英文关键词: | research project
; metachronal paddling
; body angle
; motion
; large body speed
; self-propelled metachronal swimming robot
; small-scale jet
; metachronal paddling robot
; interdisciplinary research
; propulsive jet
|
英文摘要: | Commercial underwater drones typically rely on a single propeller element. If this element were to fail, then the drone would be lost. In contrast, the existence of multiple propulsion elements would permit continued use upon failure of a single propeller. Natural aquatic organisms illustrate a unique opportunity to use multiple propulsion elements to generate small-scale jets. Krill, shrimp, and crayfish, all use several pairs of limbs in highly coordinated motion to swim. The animal rhythmically oscillates its limbs from the tail-to-head at low velocity, with the timing of each pair delayed relative to its neighbors. Nature?s design uses much less energy than our engineered underwater drones. Mechanical elements, such as gears and timing belts, could be used to cost effectively mimic nature?s design. However, the underlying fluid dynamics of this metachronal (sequential) paddling is not well-understood. A limited number of studies have suggested limb morphology, the precision timing of the paddling sequence, and the generation of jets in the wake of the organism all contribute to this unique propulsion mechanism. This research project examines how coordination of adjacent limbs interact with the flow past the body to generate propulsive jets in the wake. Uncovering the underlying fluid dynamic principles of metachronal paddling will enable scalability to engineered devices, allowing for efficient design of miniaturized, bio-inspired autonomous underwater drones.
This research project examines how the coordinated motion of multiple oscillating paddles merge with large-scale flow past a submerged object to generate propulsive forces. A combination of experiments with both live animals and robotic models will be used. Tomographic particle image velocimetry measurements of free-swimming aquatic organisms will be used to validate flow fields predicted by physical models. Self-propelled metachronal swimming robots will be used to examine the flow for individual and collective motion of the robots. Mechanical performance with respect to body angles, swimming speeds, and neighbor distances in individual and small groups of metachronal paddling robots will be examined. A primary project outcome will be the fluid dynamics mechanism by which aquatic organisms achieve large body speeds by paddling individual limbs at low velocity. The outcomes of this research will enable engineers to design and coordinate the motion of multiple propellers on engineered devices. In addition, the research project trains undergraduate and graduate students to conduct interdisciplinary research in bioengineering. Existing mechanisms at both institutions (NSF-funded Oklahoma Louis-Stokes Alliance for Minority Participation and Georgia Tech FOCUS program) are being used to recruit under-represented students for the project, and the researchers are participating in outreach activities to high school students and their teachers. |
资源类型: | 项目
|
标识符: | http://119.78.100.158/handle/2HF3EXSE/89010
|
Appears in Collections: | 全球变化的国际研究计划 科学计划与规划
|
There are no files associated with this item.
|
Recommended Citation: |
Donald Webster. Collaborative Research: The Roles of Inter-limb Jets and Body Angles in Metachronal Paddling. 2017-01-01.
|
|
|