globalchange  > 全球变化的国际研究计划
项目编号: 1734752
项目名称:
COLLABORATIVE RESEARCH: The statistical mechanics of bed load sediment transport: Scaling particle motion to fluvial form
作者: Mark Schmeeckle
承担单位: Arizona State University
批准年: 2017
开始日期: 2017-08-01
结束日期: 2021-07-31
资助金额: 225998
资助来源: US-NSF
项目类别: Continuing grant
国家: US
语种: 英语
特色学科分类: Geosciences - Earth Sciences
英文关键词: gravel-bed flume ; sediment motion ; gravel-bedded river ; sediment transport ; particle motion ; transport condition ; alternate bar formation ; streambed topography
英文摘要: The streams and rivers of the United States are in a state of flux due to the building, and now decommissioning, of tens of thousands of dams, as well as changes in water use and land use influencing river flows. Extensive field studies have documented complex changes to the geometry and substrate of gravel-bedded rivers affecting fish and other biota. Due to the patchy, intermittent nature of the motion of sand and gravel carried by turbulent river flow, current models of sediment transport are unable to predict most of these critical riparian changes. This project investigates and describes sediment motion at the level of individual grains and turbulent eddies using physics-based supercomputer algorithms and advanced laboratory imaging techniques. Statistical physical principles are applied to these supercomputer and laboratory results to produce a theoretical framework that is expected to provide predictive capabilities, and thus, policy guidance regarding dramatic changes occurring in the country's waterways.

The experimental work involves gravel-bed flumes and high-speed video to illustrate the basis for changes in streambed topography, and how the characteristic length-scales in this problem are determined by the distribution of particle motions. Laboratory experiments will be replicated by particle- and turbulence-resolving supercomputer simulations coupled in momentum. The work also is aimed at parameterizing statistical theory for the case of alternate bar formation, thus providing the basis for further clarifying channel-scale morphodynamics problems in which patchy, rarefied transport conditions exist.

This award is cofunded by the Geomorphology and Land-use Dynamics Program and the National Strategic Computing Initiative.
资源类型: 项目
标识符: http://119.78.100.158/handle/2HF3EXSE/89543
Appears in Collections:全球变化的国际研究计划
科学计划与规划

Files in This Item:

There are no files associated with this item.


Recommended Citation:
Mark Schmeeckle. COLLABORATIVE RESEARCH: The statistical mechanics of bed load sediment transport: Scaling particle motion to fluvial form. 2017-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Mark Schmeeckle]'s Articles
百度学术
Similar articles in Baidu Scholar
[Mark Schmeeckle]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Mark Schmeeckle]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.