globalchange  > 全球变化的国际研究计划
项目编号: 1747600
项目名称:
EAGER: Collaborative Research: Testing the marine carbonate recycling hypothesis
作者: Paterno Castillo
承担单位: University of California-San Diego Scripps Inst of Oceanography
批准年: 2017
开始日期: 2017-08-01
结束日期: 2018-07-31
资助金额: 55968
资助来源: US-NSF
项目类别: Standard Grant
国家: US
语种: 英语
特色学科分类: Geosciences - Earth Sciences
英文关键词: marine carbonate ; hypothesis ; oceanic basalt ; project ; exploratory research
英文摘要: This EArly-concept Grant for Exploratory Research (EAGER) project will test if it is possible to trace geochemically the inclusion of ancient marine carbonates, a common type of sedimentary rock formed in the ocean floor, in volcanic rocks currently erupting in oceanic islands such as Hawaii, Saint Helena and the Cook-Australs. The confirmation of such a crustal recycling process would have a number of significant implications that would advance the field of Earth Sciences. Marine carbonates have a distinctively high content of the radioactive parent U (Uranium), which decays to radiogenic daughter Pb (Lead) isotopes. This project will test this hypothesis using a new combination of geochemical proxies. Recycling of surface sediments via subduction zones into the source of oceanic volcanic rocks has been documented before. The project, however, will try to explore if variations of the stable isotopes of Ca (Calcium) and Mg (Magnesium) could be a good way of tracking this process for subducted carbonates. Finally, it would also help us better constrain the various chemical components in the Earth's mantle and further elucidate the evolution of our planet over time. These results will be accessible and disseminated through presentations in scientific meetings and publications in scientific journals.

The unusually radiogenic Pb isotopic ratios of many, if not all, oceanic basalts have generated three major problems, or so-called Pb paradoxes, regarding their mantle sources. These sources must be characterized by 1) long time-integrated high U/Pb, 2) long time-integrated low Th/U and 3) constant Ce/Pb and Nb/U. Although some of the currently proposed solutions to individual Pb paradoxes are highly satisfactory, they are generally independent and at odds with each other. The Pb paradoxes, however, are inter-related and constitute a system of equations that should be solved all together, as the solution to each paradox must also be able explain the other paradoxes. This study hopes to test a hypothesis that recycled marine carbonates, with their high U/Pb and U/Th ratios, can flux-melt the subducted oceanic slab to produce some oceanic basalts. Melts containing mixtures of enriched and depleted mantle components (i.e., between recycled crust and the proposed FOZO and/or DMM mantle components) can generate the radiogenic Pb isotopic ratios and concomitant Pb paradoxes in oceanic basalts. This pilot project will verify the proposed marine carbonate recycling hypothesis through the analysis of a select set of extreme oceanic basalts using coupled Ca and Mg isotopic analysis combined with conventional geochemical methods. The results will have the potential to transform our understanding of mantle geodynamics including the formation of ocean island basalts, recycling of crustal materials, mantle convection, and history and evolution of the composition of the mantle.
资源类型: 项目
标识符: http://119.78.100.158/handle/2HF3EXSE/89581
Appears in Collections:全球变化的国际研究计划
科学计划与规划

Files in This Item:

There are no files associated with this item.


Recommended Citation:
Paterno Castillo. EAGER: Collaborative Research: Testing the marine carbonate recycling hypothesis. 2017-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Paterno Castillo]'s Articles
百度学术
Similar articles in Baidu Scholar
[Paterno Castillo]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Paterno Castillo]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.