globalchange  > 全球变化的国际研究计划
项目编号: 1604682
项目名称:
Collaborative Research: Next-Generation Simultaneously Ion- and Electron-Conducting Block Copolymer Binders for Battery Electrodes
作者: Jodie Lutkenhaus
承担单位: Texas A&M Engineering Experiment Station
批准年: 2016
开始日期: 2016-09-01
结束日期: 2019-08-31
资助金额: 199999
资助来源: US-NSF
项目类别: Standard Grant
国家: US
语种: 英语
特色学科分类: Engineering - Chemical, Bioengineering, Environmental, and Transport Systems
英文关键词: polymer ; research plan ; lithium ion battery system ; scientific research ; lithium ion battery ; collaborative project ; rechargeable lithium ion battery ; battery electrode ; lithium-ion battery
英文摘要: Rechargeable lithium ion batteries help to enable sustainable energy systems by storing electricity generated by intermittent renewable resources such as wind and solar energy, or by powering zero-emission electric vehicles charged by electricity from renewable resources. Lithium-ion batteries are comprised of a variety of materials for storing and releasing ions, transporting electrical charge, and maintaining mechanical integrity. Binder materials, although representing less than 10% of the battery by weight, are an important component for maintaining adhesion between the different materials. This collaborative project will develop a new class of binding materials based on polymers that are both conductive and electrochemically active, enhancing both mechanical and electrochemical properties. The scientific research will establish the principles for the design of electroactive polymeric binders for lithium ion batteries. The key innovation is that the polymer material will be designed at the molecular level to enable these electroactive properties. When properly designed at the molecular level, these polymers have potential to improve the stability and performance of a wide range of battery electrodes. The educational activities associated with this project will provide opportunities for community college students to work on the development of conjugated polymers for energy storage. Furthermore, outreach activities to K-12 students from diverse and underrepresented groups are planned through Chemistry Open House, Empowering Leadership Alliance, Schlumberger Energy Institute, and the Sally Ride Festival.

In lithium ion battery systems, polymeric binders provide adhesion with various electrode components and stabilize contact with the current collector. However, current binders are electronically inactive. Substantial improvements in electrode performance and capacity may be possible through the molecular design of electroactive polymeric binders. Towards this end, polymeric binders that are ion-conducting, electron-conducting, and redox-active as well as mechanically stable, are needed. The goal of this research is to develop and understand the functionality of the polymer materials needed to enable these properties. The research plan will consider polymers that contain electronically conductive backbones, side chains for self-doping and ionic conductivity, and redox-active carbonyl groups. The research plan has three objectives. The first objective is to synthesize co-polymers that conduct both ions and electrons simultaneously, and characterize their resulting structural, physiochemical, and electrochemical properties. The second objective is to characterize the electrochemical/mechanical properties of hybrid anodes containing a silicon base material and polymer binders developed under the first objective. The third objective is to incorporate redox-active groups into the polymer backbone and examine their role on conductive polymer binder properties. Through this approach, this work seeks to establish the fundamental properties that influence conductivity, mechanical integrity, and electrochemical activity of the polymeric materials to suggest design rules for electroactive binders that are compatible with a broad range of electrode materials.
资源类型: 项目
标识符: http://119.78.100.158/handle/2HF3EXSE/91107
Appears in Collections:全球变化的国际研究计划
科学计划与规划

Files in This Item:

There are no files associated with this item.


Recommended Citation:
Jodie Lutkenhaus. Collaborative Research: Next-Generation Simultaneously Ion- and Electron-Conducting Block Copolymer Binders for Battery Electrodes. 2016-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Jodie Lutkenhaus]'s Articles
百度学术
Similar articles in Baidu Scholar
[Jodie Lutkenhaus]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Jodie Lutkenhaus]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.