globalchange  > 全球变化的国际研究计划
项目编号: 1443373
项目名称:
Collaborative Research: Stochasticity and Cryoconite Community Assembly and Function
作者: Andrew Fountain
承担单位: Portland State University
批准年: 2016
开始日期: 2016-09-01
结束日期: 2019-08-31
资助金额: 282431
资助来源: US-NSF
项目类别: Standard Grant
国家: US
语种: 英语
特色学科分类: Geosciences - Polar
英文关键词: cryoconite hole ; community assembly ; ecosystem ; assembly order ; community ; community establishment ; microbial community ; community composition ; community size ; final community composition
英文摘要: Cryoconite holes are pockets of life completely encased in otherwise barren glacial ice. These pockets of life form when dust blown onto the ice melts a small, largely isolated hole that can function as its own tiny ecosystem. This dust can contain microorganisms such as bacteria, algae, or microscopic animals. The microorganisms within the hole interact and carry out functions typical of a larger ecosystem, such as a forest. Cryoconite holes are especially important in extreme cold environments such as the Antarctic Dry Valleys, where they function as repositories of life. Because cryoconite holes are mostly enclosed and persist for years, they can be tracked over time to test fundamental scientific questions about how communities of interacting organisms develop to become fully functioning ecosystems. This project will sample existing and experimentally created cryoconite holes to understand how these ecosystems develop and to what degree random processes (such as which organisms get there first) affect the final community composition and functioning. The results will not only improve our understanding of how microbial communities assemble and affect the functioning of microecosystems such as cryoconite holes, but also how the processes of community assembly affect functioning of larger ecosystems, such as forests. A better understanding of community establishment, development, and response to abiotic factors are essential to forecasting ecological responses to environmental change.

It is essential to unravel the links between community assembly, biodiversity, and nutrient cycling across numerous ecosystems because these are critical factors determining ecological responses to environmental change. The unique, largely isolated nature of cryoconite holes provides an experimental system that will advance fundamental understanding of the processes (e.g., stochastic dynamics such as dispersal limitation, assembly order, and ecological drift) driving community assembly. This project will use a field sampling campaign and a number of manipulative experiments to test a hypothesis that unites theory in community and ecosystem ecology: the degree to which stochastic processes guide microbial community assembly and affects regional patterns in biodiversity and ecosystem processes. Cryoconite holes will be sampled to compare community composition, environmental factors, and ecosystem functioning between hydrologically connected and isolated holes. New cryoconite holes will also be constructed and monitored over the course of two growing seasons to specifically alter assembly order and community size, thereby pairing a unique manipulative experiment with field surveys to address questions with relevance to the Antarctic and beyond. Amplicon sequencing, metagenomics, microscopy, sensitive environmental chemistry methods, and photosynthesis and respiration measurements will be used to test a series of sub-hypotheses that relate stochasticity to patterns in regional biodiversity, heterogeneity in environmental factors, and ecosystem processes.
资源类型: 项目
标识符: http://119.78.100.158/handle/2HF3EXSE/91129
Appears in Collections:全球变化的国际研究计划
科学计划与规划

Files in This Item:

There are no files associated with this item.


Recommended Citation:
Andrew Fountain. Collaborative Research: Stochasticity and Cryoconite Community Assembly and Function. 2016-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Andrew Fountain]'s Articles
百度学术
Similar articles in Baidu Scholar
[Andrew Fountain]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Andrew Fountain]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.