项目编号: | 1637764
|
项目名称: | NRI: Task-Based Assistance for Software-Enabled Biomedical Devices |
作者: | Todd Murphey
|
承担单位: | Northwestern University
|
批准年: | 2016
|
开始日期: | 2016-09-01
|
结束日期: | 2019-08-31
|
资助金额: | 429782
|
资助来源: | US-NSF
|
项目类别: | Standard Grant
|
国家: | US
|
语种: | 英语
|
特色学科分类: | Engineering - Chemical, Bioengineering, Environmental, and Transport Systems
|
英文关键词: | work
; task
; person
; software
; algorithm
; development
; motion
; people
; rehabilitation
; assistive biomedical device
; museum
; pi
; physical therapy
; software decision
|
英文摘要: | 1637764 - Murphey
Robotic assistive devices help people execute and learn physical tasks. Sometimes these tasks are relatively simple, sometimes they are in a particular context, and sometimes they are highly dynamic and very task specific. This work will create algorithms that enable the delivered assistance to take into account algorithmic descriptions of the underlying task. As an example, walking is a highly structured task that simultaneously requires efficiency and stability during motion and must take into account terrain characteristics. The work takes advantage of task knowledge to either modify a person's motion or exert forces that help the person complete the task. This capability is relevant to rehabilitation and physical therapy, where one may wish to only minimally help a person in order to improve therapy outcomes. This work will therefore impact the development of software that supports people engaged in robot-assisted physical therapy, including people recovering from various forms of injury. The key to this work is that knowledge of a task is combined with knowledge of a person's capabilities to synthesize software decisions that ensure safety while also maximizing a person's agency during motion. Broader impact of this work includes technology transfer to rehabilitation, outreach through the Museum of Science and Industry in Chicago, classroom innovation, and industry collaboration.
The proposed work will create software-enabled, task-specific support for assistive biomedical devices. Dynamic tasks require that a combination of the robot and the assisted person be both effective and safe, and the proposed research will create algorithms and software that ensure efficacy and safety while leaving the user free to both move and exert effort. The latter is important in contexts like physical therapy, where effort is important to therapeutic impact. The proposed work will leverage recent results in real-time nonlinear optimal control techniques for human-in-the-loop systems. Specifically, sequential action control (SAC) will be used to both filter and assist human subject dynamic behavior, using a method called the Maxwell's Demon Algorithm. The work will additionally develop formal methodologies for establishing stability and performance guarantees for the proposed algorithms. Lastly, the proposed work will develop compact representations of the controlled assistance algorithms appropriate for computationally minimal embedded systems. All the work will be developed in the Robot Operating System (ROS), making the developed tools widely available to both researchers and companies. The algorithms will be tested on haptic devices and an exoskeleton. The broader impacts for this work will include outreach, technology transfer to rehabilitation, the development of courses in dynamics and analysis, and industrial collaboration. The PI is currently working with the Museum of Science and Industry, and as part of the proposed work the PI and supported students will participate in a National Robotics Week exhibit in the main rotunda of the museum with an estimated viewership of over ten thousand on-site visitors. The PI is involved in significant classroom innovations, and the proposed work will include development of courses in analysis and dynamics. Lastly, the project will include a collaboration with Ekso Bionics, leveraging and impacting their unparalleled expertise in exoskeleton development. |
资源类型: | 项目
|
标识符: | http://119.78.100.158/handle/2HF3EXSE/91309
|
Appears in Collections: | 全球变化的国际研究计划 科学计划与规划
|
There are no files associated with this item.
|
Recommended Citation: |
Todd Murphey. NRI: Task-Based Assistance for Software-Enabled Biomedical Devices. 2016-01-01.
|
|
|