globalchange  > 全球变化的国际研究计划
项目编号: 1722533
项目名称:
CAREER: Photoactivated miRNA delivery for modulation of human adipose stromal cell differentiation
作者: Daniel Hayes
承担单位: Pennsylvania State Univ University Park
批准年: 2016
开始日期: 2016-08-15
结束日期: 2018-02-28
资助金额: 82820
资助来源: US-NSF
项目类别: Standard Grant
国家: US
语种: 英语
特色学科分类: Engineering - Chemical, Bioengineering, Environmental, and Transport Systems
英文关键词: project ; mirna delivery system ; mirna use ; development ; stem cell biology ; regenerative medicine ; current state-of-the-art oligonucleotide delivery technique ; traditional mirna delivery vector ; several mirna ; adult stem/stromal cell
英文摘要: 1254281
Hayes

Modulation of cell and tissue function with microRNA (miRNA), which are small non-coding RNA sequences naturally found in animal and plant tissues, is a promising technique to improve the control of wound healing and tissue repair processes. When combined with adult stem/stromal cell (ASC) therapies these techniques may result in a new regenerative medicine paradigm. Several miRNA and other potential oligonucleotide based therapeutics have been demonstrated to posses potent bioactivity but current state-of-the-art oligonucleotide delivery techniques are largely incompatible with clinical therapies due to toxicity and lack of specific action. This project will address the critical need for a clinically relevant, safe and effective miRNA delivery system which provides temporal and spatial control of activation at the site of diseased or damaged tissue. As a primary objective the project will optimize, a nanoparticle (NP) based, light activated, miRNA delivery system (LAMD) for the light activated spatial and temporal regulation of bone and blood vessel formation using ASC as a model system. A secondary objective is the development of a more cost effective and robust processes for the fabrication of a targeted version of the basic LAMD system. Research into manufacturing processes with improved yields and morphological control will address a critical limitation to the development of therapies using targeted particles.

With the lengthening life span and increasing activity levels of the aging population we expect to see a substantial increase in the number of patients presenting with orthopaedic injuries. Of particular interest are solutions to skeletal disorders, such as bone disunions and non-healing, critical sized defects caused by wear, cancers, trauma or as the result joint replacement. The development of a photoactivated, nanoparticle based, miRNA delivery system that addresses the limitations of traditional miRNA delivery vectors while providing for spatial and temporal control of activity could be transformative for miRNA use in regenerative medicine. This project will provide direct support for several undergraduate and graduate students per year to work on this project as research scholars. The project presents a unique and interdisciplinary opportunity for students majoring in biomedical engineering, chemistry and related fields to build fundamental knowledge and appreciation in the areas of nanomaterial synthesis, stem cell biology, photobiology and regenerative medicine. The outreach components of this project will include K-12, undergraduate and graduate education activities.
资源类型: 项目
标识符: http://119.78.100.158/handle/2HF3EXSE/91397
Appears in Collections:全球变化的国际研究计划
科学计划与规划

Files in This Item:

There are no files associated with this item.


Recommended Citation:
Daniel Hayes. CAREER: Photoactivated miRNA delivery for modulation of human adipose stromal cell differentiation. 2016-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Daniel Hayes]'s Articles
百度学术
Similar articles in Baidu Scholar
[Daniel Hayes]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Daniel Hayes]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.