globalchange  > 全球变化的国际研究计划
项目编号: 1550147
项目名称:
Collaborative Research: Quantifying Paleotopography and Paleoclimate to Test Geodynamic Models in the Peruvian Andes
作者: Daniel Breecker
承担单位: University of Texas at Austin
批准年: 2016
开始日期: 2016-06-01
结束日期: 2019-05-31
资助金额: 43169
资助来源: US-NSF
项目类别: Continuing grant
国家: US
语种: 英语
特色学科分类: Geosciences - Earth Sciences
英文关键词: climate ; uplift ; central andes ; current geodynamic model ; several early career researcher ; project ; data-validated fluvial erosion modeling ; research experience ; peruvian ande ; isotope-enabled general circulation modeling ; research team ; female researcher ; geodynamic model ; different model ; underrepresented minority ; andean orogenesis
英文摘要: Although plate tectonics provides a first-order explanation of the origin of mountain belts, the tectonic processes that drive surface the uplift and exhumation of mountain belts are not well understood. Even less well understood are the interactions of between uplift, erosional processes, and climate that shape the mountain landscape. This project uses state-of-the art to examine the interaction of tectonics, erosion, and climate in the Peruvian Andes to test new and controversial ideas concerning the uplift of the Andes. The project advances desired societal outcomes through: (1) full participation of women and underrepresented minorities in STEM through support of an female researchers and students plus outreach programs to high school and undergraduate students from underrepresented minorities; (2) increased public scientific literacy and public engagement with STEM through participation of outreach programs that provide research experiences for high school and undergraduate students from underrepresented minorities ; (3) development of a diverse, globally competitive STEM workforce through undergraduate and graduate student training and support of several early career researchers; and (4) increased partnerships through international collaboration. The Division of Earth Sciences Tectonics and Geomorphology & Land Use Dynamics Programs and the NSF Office of International Science and Engineering supported this project.

Earth's surface topography responds directly to mantle processes and plate tectonics, controls surface drainage and sediment transport patterns, and influences atmospheric circulation and climate. As the type example of ocean-continent subduction-generated high topography, the Central Andes are critical to evaluating geodynamic models of orogenesis. Although previous studies of the structural history, past elevations, and incision record have provided important insights on surface uplift, these studies also suggest a disparate range of uplift histories and associated tectonic drivers. Current geodynamic models for Andean orogenesis include: (1) continuous late Cenozoic crustal thickening and shortening, resulting in gradual surface uplift and canyon incision; (2) late Cenozoic delamination of South American lithosphere, resulting in rapid surface uplift and a late Miocene pulse of incision; and (3) early Cenozoic contraction-driven crustal thickening, resulting in near modern elevations in the west by late Eocene and propagating deformation eastward through the Cenozoic. To distinguish between models, this project uses: (1) stable isotope analyses of volcanic glasses and soil carbonates to provide quantitative estimates of paleoelevations over time, coupled with geochronology to constrain timing; (2) isotope-enabled general circulation modeling to determine how changing elevations affected climate and to quantitatively interpret stable isotope data, constrained by modern elevation-isotope and climate-isotope relationships; (3) data-validated fluvial erosion modeling to predict the erosional response to different models; and (4) fluvial and lacustrine sedimentology and sediment provenance to identify changes in drainage system extent and basin development. By synthesizing these data, the research team will quantify surface topography and erosion during orogenic evolution and distinguish between proposed tectonic and climatic controls.
资源类型: 项目
标识符: http://119.78.100.158/handle/2HF3EXSE/92161
Appears in Collections:全球变化的国际研究计划
科学计划与规划

Files in This Item:

There are no files associated with this item.


Recommended Citation:
Daniel Breecker. Collaborative Research: Quantifying Paleotopography and Paleoclimate to Test Geodynamic Models in the Peruvian Andes. 2016-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Daniel Breecker]'s Articles
百度学术
Similar articles in Baidu Scholar
[Daniel Breecker]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Daniel Breecker]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.