globalchange  > 影响、适应和脆弱性
项目编号: 1443710
项目名称:
Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core
作者: Jeffrey Severinghaus
承担单位: University of California-San Diego Scripps Inst of Oceanography
批准年: 2014
开始日期: 2015-09-01
结束日期: 2018-08-31
资助金额: USD411517
资助来源: US-NSF
项目类别: Continuing grant
国家: US
语种: 英语
特色学科分类: Geosciences - Polar
英文关键词: south pole ice core ; gas chronology ; inert gas ; gas ; methane ; ice-core ; age-ice ; gas age-ice age difference ; east antarctic ice core ; gas entrapment ; potent trace gas ; methane synchronization ; consequent climate change amplification ; independent ice ; south pole 1500m ice core ; gas record ; gas-oriented core ; climate change ; human-produced gas burden ; ice-core science ; gas tie point ; well-dated ice core ; atmospheric gas variation ; young researcher ; deep core sample ; deep core site ; trace gas ; greenhouse gas composition ; trace gas production ; gas enclosure process ; polar research ; ice core ; ice-core d15n ; deep air convection
英文摘要: Gases trapped in ice cores have revealed astonishing things about the greenhouse gas composition of the past atmosphere, including the fact that carbon dioxide concentrations never rose above 300 parts per million during the last 800,000 years. This places today's concentration of 400 parts per million in stark contrast. Furthermore, these gas records show that natural sources of greenhouse gas such as oceans and ecosystems act as amplifiers of climate change by increasing emissions of gases during warmer periods. Such amplification is expected to occur in the future, adding to the human-produced gas burden. The South Pole ice core will build upon these prior findings by expanding the suite of gases to include, for the first time, those potent trace gases that both trapped heat and depleted ozone during the past 40,000 years. The present project on inert gases and methane in the South Pole ice core will improve the dating of this crucial record, to unprecedented precision, so that the relative timing of events can be used to learn about the mechanism of trace gas production and destruction, and consequent climate change amplification. Ultimately, this information will inform predictions of future atmospheric chemical cleansing mechanisms and climate in the context of our rapidly changing atmosphere. This award also engages young people in the excitement of discovery and polar research, helping to entrain the next generations of scientists and educators. Education of graduate students, a young researcher (Buizert), and training of technicians, will add to the nation?s human resource base.

This award funds the construction of the gas chronology for the South Pole 1500m ice core, using measured inert gases (d15N and d40Ar--Nitrogen and Argon isotope ratios, respectively) and methane in combination with a next-generation firn densification model that treats the stochastic nature of air trapping and the role of impurities on densification. The project addresses fundamental gaps in scientific understanding that limit the accuracy of gas chronologies, specifically a poor knowledge of the controls on ice-core d15N and the possible role of layering and impurities in firn densification. These gaps will be addressed by studying the gas enclosure process in modern firn at the deep core site. The work will comprise the first-ever firn air pumping experiment that has tightly co-located measurements of firn structural properties on the core taken from the same borehole.

The project will test the hypothesis that the lock-in horizon as defined by firn air d15N, CO2, and methane is structurally controlled by impermeable layers, which are in turn created by high-impurity content horizons in which densification is enhanced. Thermal signals will be sought using the inert gas measurements, which improve the temperature record with benefits to the firn densification modeling. Neon, argon, and oxygen will be measured in firn air and a limited number of deep core samples to test whether glacial period layering was enhanced, which could explain low observed d15N in the last glacial period. Drawing on separate volcanic and methane synchronization to well-dated ice cores to create independent ice and gas tie points, independent empirical estimates of the gas age-ice age difference will be made to check the validity of the firn densification model-inert gas approach to calculating the gas age-ice age difference. These points will also be used to test whether the anomalously low d15N seen during the last glacial period in east Antarctic ice cores is due to deep air convection in the firn, or a missing impurity dependence in the firn densification models.

The increased physical understanding gained from these studies, combined with new high-precision measurements, will lead to improved accuracy of the gas chronology of the South Pole ice core, which will enhance the overall science return from this gas-oriented core. This will lead to clarification of timing of atmospheric gas variations and temperature, and aid in efforts to understand the biogeochemical feedbacks among trace gases. These feedbacks bear on the future response of the Earth System to anthropogenic forcing. Ozone-depleting substances will be measured in the South Pole ice core record, and a precise gas chronology will add value. Lastly, by seeking a better understanding of the physics of gas entrapment, the project aims to have an impact on ice-core science in general.
资源类型: 项目
标识符: http://119.78.100.158/handle/2HF3EXSE/93360
Appears in Collections:影响、适应和脆弱性
气候减缓与适应

Files in This Item:

There are no files associated with this item.


Recommended Citation:
Jeffrey Severinghaus. Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core. 2014-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Jeffrey Severinghaus]'s Articles
百度学术
Similar articles in Baidu Scholar
[Jeffrey Severinghaus]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Jeffrey Severinghaus]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.