globalchange  > 影响、适应和脆弱性
项目编号: 1504348
项目名称:
Collaborative Research: Assessing the Simulated Arctic Freshwater System in CMIP5 Models, the CESM Large Ensemble, and Forced Simulations
作者: Alexandra Jahn
承担单位: University of Colorado at Boulder
批准年: 2014
开始日期: 2015-08-01
结束日期: 2018-07-31
资助金额: USD351004
资助来源: US-NSF
项目类别: Standard Grant
国家: US
语种: 英语
特色学科分类: Geosciences - Polar
英文关键词: fw ; simulation ; cesm ; cmip5 ; arctic fw budget ; internal variability ; different source ; climate model ; canadian arctic archipelago ; role ; sea ice model complexity ; climate simulation ; project ; arctic sea ice ; model difference ; across-model scatter ; community earth system model ; ensemble need ; atmospheric research ; arctic switchyard region ; large cesm ensemble ; arctic ocean freshwater ; arctic ocean fw change ; coupled model intercomparison project phase ; observation ; modeling experiment ; arctic ocean dynamics ; arctic freshwater ; arctic ocean fw budget ; large ensemble
英文摘要: The Arctic freshwater (FW) system is likely to undergo considerable change in coming decades with downstream impacts on ocean circulation, climate, and ecosystems. An ability to understand and project these impacts, in turn, will have important socio-economic influences on fisheries, energy distribution, and reinsurance industries, amongst others. However, the reliability of climate projections is uncertain and there is only a limited understanding of the importance of natural variability in the midst of anthropogenically forced change. This project seeks to address these issues through a series of modeling experiments and comparison of the model results with observational and reanalysis data sets. This project will contribute to STEM workforce development through provision of support to a young, early-career, female PI during the formative years of her career and support for the training of a graduate student. The PI will leverage her connections with the National Center for Atmospheric Research to include project results in their outreach exhibits for the general public. Results will also be included in public talks and university lectures.


This project will investigate the following major science questions:
1. Do climate models show a consistent picture of projected Arctic Ocean FW changes during the 21st century and beyond? Are there obvious reasons for the model differences (e.g., resolution, sea ice model complexity, number of straits through the Canadian Arctic Archipelago, etc.)?
2. How large is the role of internal variability for different terms of the Arctic FW budget in climate simulations? How does this affect uncertainty in future projections at various timescales? How large does an ensemble need to be in order to capture the magnitude of internal variability?
3. How well do simulated FW components in Fram Strait and the switchyard region agree with observations from the last decade? What are the dynamics that lead to changes in FW from different sources?
To address these questions, first the Arctic Ocean freshwater (FW) budget in the suite of the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations for the 20th and 21st century will be assessed, followed by an analysis of the role of internal variability of terms of the Arctic FW budget in a large ensemble of simulations from the Community Earth System Model (CESM). Finally, the contribution of FW from different sources in Fram Strait and the Arctic switchyard region in the CESM will be compared with observations using new simulated FW tracers, and the Arctic Ocean dynamics leading to the variability of FW from different sources will be investigated. The Arctic Ocean FW budget has not been analyzed for the new generation of climate models participating in CMIP5, despite the changes that can be expected compared to CMIP3 due to the improvements to the simulation of the Arctic sea ice and the additional open passages in the Canadian Arctic Archipelago. The use of the large CESM ensemble provides an unique opportunity to assess the role of internal variability in terms of the Arctic FW budget, and comparisons to across-model scatter from CMIP5 will allow insight on the sources of uncertainty in future projections. Furthermore, the use of FW tracers in the CESM will allow a more detailed comparison with a new set of observations and will enable analysis of the dynamics that lead to the observed interannual variability of FW from different sources in two key regions in the Arctic.
资源类型: 项目
标识符: http://119.78.100.158/handle/2HF3EXSE/93770
Appears in Collections:影响、适应和脆弱性
气候减缓与适应

Files in This Item:

There are no files associated with this item.


Recommended Citation:
Alexandra Jahn. Collaborative Research: Assessing the Simulated Arctic Freshwater System in CMIP5 Models, the CESM Large Ensemble, and Forced Simulations. 2014-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Alexandra Jahn]'s Articles
百度学术
Similar articles in Baidu Scholar
[Alexandra Jahn]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Alexandra Jahn]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.