globalchange  > 影响、适应和脆弱性
项目编号: 1520202
项目名称:
Collaborative Research: Establishing a Novel Geophysical Monitoring Scheme for Delineating In Situ Carbonation Processes in Ultramafic Complexes
作者: James Kinsey
承担单位: Woods Hole Oceanographic Institution
批准年: 2014
开始日期: 2015-07-15
结束日期: 2018-06-30
资助金额: USD60000
资助来源: US-NSF
项目类别: Standard Grant
国家: US
语种: 英语
特色学科分类: Geosciences - Earth Sciences
英文关键词: peridotite carbonation ; carbonation process ; rock ; high-resolution monitoring technique ; atmospheric co2 monitoring ; co2 ; carbon sequestration
英文摘要: This project investigates natural carbon sequestration processes in geologic formations using geophysical methods. At the largest scale, this approach will ultimately assess future geological applications for atmospheric CO2 monitoring and mitigation efforts. The research seeks to establish a novel, field-based, high-resolution monitoring technique for how carbon sequestration takes place through natural carbonation processes. They use magnetics and gravity measurements acquired by state-of-art sensors in the field. The survey site is located within Atlin ophiolite, British Columbia, Canada,where previous studies indicate exposure of the relevant rocks. Their approach allows the reseachers to directly observe the carbonation process and gain insight into this important scientific process as well as its impacts on the broader earth science community.

Chemical processes occurring during the formation of Earth?s rock represents the largest single long-term sink in the global carbon cycle. One such process is peridotite carbonation, the chemical process in which gaseous carbon dioxide (CO2) is solidified by the interaction of existing rock and water. Understanding peridotite carbonation is important for understanding a variety of Earth science processes, including the exchange of carbon between the atmosphere, hydrosphere (e.g., oceans, rivers, groundwater, etc) and Earth?s crust and interior, the habitability of microbial organisms hosted by this process, and the role that carbon (specifically amount and distribution) play in the evolution of Earth. Furthermore, the peridotite carbonation process serves as a permanent (i.e., stable and long-term) method for storing CO2 and has the potential to be one of the most efficient applications for geological CO2 sequestration. Thus peridotite carbonation may provide a viable method for the long-term storage of anthropogenic (man made) CO2. They test the hypothesis that observable changes in magnetics and gravity signals correspond to the magnetic and gravitational attraction of the rock that changes with variations in the naturally occurring carbon sequestration within the rock. Previously, this hypothesis has only been tested in the laboratory using small field samples; here they study this process directly in large field studies, where previous mapping indicated the exposure and clear spatial zonation in the field of mantle peridotite, serpentinite and listvenite (the end product of the carbonation process of mantle peridotite) that are separated by additional zones consisting of transitional assemblages comprising both adjacent end-member assemblages.
资源类型: 项目
标识符: http://119.78.100.158/handle/2HF3EXSE/93952
Appears in Collections:影响、适应和脆弱性
气候减缓与适应

Files in This Item:

There are no files associated with this item.


Recommended Citation:
James Kinsey. Collaborative Research: Establishing a Novel Geophysical Monitoring Scheme for Delineating In Situ Carbonation Processes in Ultramafic Complexes. 2014-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[James Kinsey]'s Articles
百度学术
Similar articles in Baidu Scholar
[James Kinsey]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[James Kinsey]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.