globalchange  > 影响、适应和脆弱性
项目编号: 1451035
项目名称:
Collaborative Research: RUI: Provenance and Paleomagnetic Analysis of the Ochoco Basin: A Window into Late Cretaceous Paleogeography
作者: Bernard Housen
承担单位: Western Washington University
批准年: 2014
开始日期: 2015-04-01
结束日期: 2018-03-31
资助金额: USD116518
资助来源: US-NSF
项目类别: Standard Grant
国家: US
语种: 英语
特色学科分类: Geosciences - Earth Sciences
英文关键词: blue mountain ; research ; sedimentary rock ; paleomagnetic signature ; provenance ; detailed provenance analysis ; research objective ; paleomagnetic inclination error ; extensive paleomagnetic analysis ; late cretaceous paleogeography ; single ochoco basin system ; well-constrained paleogeography ; stem research ; other cretaceous basin ; combined ochoco basin ; cretaceous paleogeography ; robust paleomagnetic analysis ; large ochoco basin ; ochoco rock ; paleomagnetic analysis ; large paleomagnetic dataset ; collaborative team environment ; provenance analysis
英文摘要: The western margin of the North American continent developed through the process of accretion of distinct tectonic terranes of diverse origin due to the oblique subduction of the Farallon plate beneath the North American plate during the Mesozoic. A consequence of this process has been the proposed translation of accreted terranes northward through time to their present-day locations. The extent to which this process has occurred and the proposed timing and magnitude of translation has been an ongoing controversy that has been debated with the geologic community for many years. The goal of this research is address this long-standing scientific controversy using a combination of independent techniques that involve determining the provenance of Late Cretaceous sedimentary rocks from the Blue Mountains and related areas in east-central Oregon using isotopic dating methods, combined with analysis of the paleomagnetic signature contained within those rocks. The provenance analysis will contribute information regarding the potential origin of those rocks with those of similar age elsewhere in North America and the paleomagnetic signature will contribute information regarding the paleolatitude at which these rocks formed. These data will contribute to a better understanding of the geologic evolution of the western North American plate margin. In addition to the research objectives of the proposed study, the project is contributing to the training of ten undergraduate students from two universities and a graduate student in an important STEM discipline and the broadening of participation of underrepresented groups in the earth sciences. The students will be involved in a collaborative team environment that will help them develop analytical and problem solving skills that will make them more competitive for and better prepared to succeed in graduate programs and careers; such training will contribute to important national priorities in terms of STEM research and education. Results of the research will be used in classroom curricula, and the principal investigators and their students will contribute information that will be shared with the National Park Service John Day Fossil Beds National Monument. Results of the research will be disseminated through presentations at professional society meetings and through the peer-reviewed scientific literature; the data will be archived and made available through web-based community databases.

The North American Cordilleran margin developed through terrane accretion throughout Mesozoic time, with oblique deformation resulting in dextral translation of many terranes. Significant questions regarding the timing and magnitude of proposed translation remain unresolved, and these uncertainties hinder further understanding of the Cretaceous paleogeography and tectonic history of this margin. The proposed project will utilize complimentary approaches to address some of these questions through study of Late Cretaceous sedimentary rocks of the Blue Mountains in east-central Oregon. The principal investigators propose to integrate detailed provenance analysis with extensive paleomagnetic analysis of Late Cretaceous clastic sedimentary rocks of the Mitchell Inlier and related sedimentary rocks elsewhere in the Blue Mountains to test if these sedimentary rocks were part of a single Ochoco basin system deposited on the Blue Mountains, or if the Mitchell Inlier was a separate forearc sliver, with a tectonic history distinct from the rest of the Blue Mountains and other Late Cretaceous sediments. If there was one large Ochoco basin that was linked to the Blue Mountains during deposition, then our robust paleomagnetic analysis of sedimentary rocks, combined with detailed provenance analysis, will better constrain the paleolatitude of the combined Ochoco basin and Blue Mountains using independent and complimentary data sets. Alternatively, our results may suggest that the Mitchell Inlier and possibly a subset of smaller sedimentary inliers were separate from the Blue Mountains during Cretaceous time, requiring the presence of now-covered large-scale fault system(s) between Mitchell and the Blue Mountains and limiting the amount of dextral translation accommodated on shear zones east of the Blue Mountains. The study will provide robust constraints on the paleolatitude of these Cretaceous rocks, and also provide a test of existing tectonic models and the predictions of these models with respect to potential correlations between Ochoco rocks, the Hornbrook Formation, and other Cretaceous basins. The project will directly address a long-standing debate in Cordilleran tectonics regarding the magnitude and timing of terrane translation by combining provenance and paleomagnetic analysis of well-bedded sedimentary rocks to reconstruct Late Cretaceous paleogeography. The Late Cretaceous sedimentary rocks in the Blue Mountains region provide an ideal opportunity to test several ideas proposed for the paleogeography and tectonic affinity of the Blue Mountains and related terranes using independent and complimentary methods. Furthermore, the large paleomagnetic dataset obtained will allow the application of three independent methods for evaluation and correction for paleomagnetic inclination error in magnetite-bearing clastic sediments. Finally, determining the well-constrained paleogeography of marginal basins such as we propose here will better enable the evidence of uplift and denudation obtained from thermochronology of detrital minerals of a given basin to be tied to a specific location within the North American Cordillera, potentially fostering critical advances in our understanding of the North American Cordillera.
资源类型: 项目
标识符: http://119.78.100.158/handle/2HF3EXSE/94909
Appears in Collections:影响、适应和脆弱性
气候减缓与适应

Files in This Item:

There are no files associated with this item.


Recommended Citation:
Bernard Housen. Collaborative Research: RUI: Provenance and Paleomagnetic Analysis of the Ochoco Basin: A Window into Late Cretaceous Paleogeography. 2014-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Bernard Housen]'s Articles
百度学术
Similar articles in Baidu Scholar
[Bernard Housen]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Bernard Housen]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.