globalchange  > 影响、适应和脆弱性
项目编号: 1419865
项目名称:
Collaborative Research: Deciphering Subduction Dynamics: Case Study of the Catalina Schist
作者: Matthew Kohn
承担单位: Boise State University
批准年: 2013
开始日期: 2014-08-01
结束日期: 2016-07-31
资助金额: USD41727
资助来源: US-NSF
项目类别: Standard Grant
国家: US
语种: 英语
特色学科分类: Geosciences - Earth Sciences
英文关键词: subduction zone ; datum ; project ; catalina schist ; subduction thermal evolution ; work ; research publication ; distinctive high-temperature subduction-related rock ; subduction channel change ; research address broad geodynamic question ; rock ; classic subduction locality ; petrogenetic research ; santa catalina island ; earth ; pressure-temperature-time
英文摘要: Subduction zones, which occur where two tectonic plates converge and one plate is thrust down into Earth's mantle, are the location of many important processes on Earth, including the generation of some of Earth's deadliest earthquakes and chains of volcanoes. At the interface between the subducting plate and the mantle significant heat transfer and physical and chemical exchange occur. To better understand how crustal and mantle materials move and interact within subduction zones, it is critically important to study rocks exhumed from this process. The proposed work will constrain how material moves within subduction zones by determining the temperature and pressure histories that these exhumed rocks experienced while in the subduction zone itself. For this work the principle investigators will analyze the chemical composition of the minerals rutile and titanite in rocks from a classic subduction locality, the Catalina Schist of southern California. They will then compare the recorded histories with histories predicted by different models for material behavior within subduction zones. In addition to the scientific goals of the project, this award is supporting the eduction of graduate and undergraduate students in an STEM discipline, is contributing to broadening of underrepresented groups in science, and the development of undergraduate course curricula in mineralogy and petrology. The project is facilitating a new collaboration between the partnering institutions involved in this effort, and is contributing direct exchange of scientific methods and analytical standards between trace element/geochronology laboratories. The results that derive from this project are being disseminated to the scientific community through research publications and presentations, and the data are being archived in appropriate community databases.

This project will exploit new developments in thermobarometry and geochronology to better understand subduction zone tectonics, using exposures of Catalina Schist on Santa Catalina Island, California, as a type example. The work will provide new, high-precision Pressure-Temperature-time (P-T-t) constraints that critically test tectonic models with unprecedented geographic scope and precision. The proposed research addresses broad geodynamic questions, e.g. to what degree does flow in the subduction channel change temporally and affect subduction thermal evolution? In addition, the principle investigators will continue to develop petrologic and chronologic tools that broadly advance petrogenetic research in other fields. This research will address two main issues in the tectonic evolution of subduction zones: (1) What is the scale of melange flow as melange matrix progressively metamorphoses? (2) What tectonic processes produced distinctive high-Temperature subduction-related rocks? Numerous different models have been generally proposed. Four basic sets of data will be collected: (1) Samples will be collected over a well-mapped area of melange and along three key transects. (2) Electron microprobe analysis will provide Pressure-Time estimates and identify specific titanite and rutile grains and domains for trace element analysis. (3) Laser-ablation Inductively-coupled-mass spectrometry (LA-ICPMS) on a sub-grain scale (50-100 micron spots) will constrain temperature and time, respectively. (4) Raman spectroscopy of mineral inclusions will constrain entrapment pressures on the prograde Pressure-Temperature path. The resulting data will be used to test tectonic models by characterizing the degree of Pressure-Temperature-time homogeneity (scale of mixing) within a melange zone and Pressure-Temperature-time trends across structure. All data will be permanently archived with MetPetDB.
资源类型: 项目
标识符: http://119.78.100.158/handle/2HF3EXSE/96132
Appears in Collections:影响、适应和脆弱性
气候减缓与适应

Files in This Item:

There are no files associated with this item.


Recommended Citation:
Matthew Kohn. Collaborative Research: Deciphering Subduction Dynamics: Case Study of the Catalina Schist. 2013-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Matthew Kohn]'s Articles
百度学术
Similar articles in Baidu Scholar
[Matthew Kohn]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Matthew Kohn]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.